Automated Assessment of Learning Objectives in
Programming Assignments

Arthur Rump
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

hello@arthurrump.com

ABSTRACT

With online forms of education, it has become harder to
‘gauge the room’ and get an impression of how well stu-
dents are following along. We introduce Apollo, a tool that
automatically analyses code uploaded by students to get
an overview of their progression towards the learning ob-
jectives of the course. First, typical learning objectives in
Computer Science courses are analysed on their suitability
for automated assessment. A set of learning objectives is
analysed further to get an understanding of what achieve-
ment of these objectives looks like in code. Finally, this is
implemented in Apollo, a tool that assesses achievement
of learning objectives in Processing projects. Validation
of the tool is not conclusive, but early results suggest
an agreement in assessment between Apollo and teaching
assistants.

Keywords

Programming Education, Automated Assessment, Auto-
mated Feedback

1. INTRODUCTION

Education has been shifting to digital environments, re-
cently accelerated due to the coronavirus pandemic. This
has made it harder for teachers to keep track of the progress
and understanding of their students. With lectures over a
live stream (or even pre-recorded), they receive very little
feedback from the audience and it has become impossible
to get a quick impression of the room during a tutorial
session.

For the Creative Technology programme at the Univer-
sity of Twente, the Atelier [7] system was developed to
aid with communication between students and teaching
assistants during programming tutorials. Atelier lets stu-
dent upload the code they are working on and share it
with teaching assistants. Teaching assistants can leave
comments on the code to remind students of the points
they discussed. One of the main features of Atelier is an
automated code checker that makes comments on the code
based on common problems [6].

The use of Atelier enables a smooth experience for indi-
vidual communication during tutorials, but it does not
solve the problem of ‘gauging the room. In this paper,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

33" Twente Student Conference on IT July 3rd, 2020, Enschede, The
Netherlands.

© 2020 Copyright held by the author. Publication rights licensed to
University of Twente, Faculty of Electrical Engineering, Mathematics
and Computer Science.

we introduce Apollo, which aims to analyse the student
programs in Atelier and give an overview of the overall
progress towards the desired learning outcomes for the
course. This allows teachers to get a global view of the
topics where students are struggling and which students
potentially need more help to get up to speed.

The main question this paper aims to answer is:

How can a student’s mastery of a programming
concept be assessed by automatically analysing
their code?

This question is best answered by splitting it into three
questions, each building towards an automated tool to
assess achievement of learning outcomes. First, there is the
question of the curriculum, and deciding which learning
outcomes are suited for this automated assessment:

RQ1 What are typical learning outcomes for introductory
programming courses and which of these are suitable for
automated assessment based on code analysis?

Then, these learning outcomes need to be worked out to
specific patterns in code that identify the achievement of
such a learning outcome:

RQ2 How can the achievement of learning outcomes be
recognized in code?

Lastly, there is the question of how this understanding
can be formalized to the extent that a computer could
recognize these levels of understanding by analysing the
code:

RQ3 How can an automated tool assess the mastery of a
concept by analysing code?

With the answers to all these questions, a technical founda-
tion for Apollo is established, which can be used to create
a dashboard for teachers to keep track of the achievements
of their students.

2. BACKGROUND
WORK

In the past, research has been done on automated feed-
back for programming exercises, which in some cases also
includes analysis of different concepts used in the code
written by a student. On the side of the computer science
curriculum and learning objectives, efforts have been made
to provide guidelines for the design of a computer science
curriculum. However, we first need to clarify the terminol-
ogy on learning outcomes, aims, goals and objectives.

2.1 Learning outcomes

Learning outcomes come in a range from vague aspirations
for students to achieve at the end of a three-year program
to very specific objectives to accomplish in a single lecture.
Wilson [24] splits learning outcomes into aims, goals and
objectives according to their specificity:

AND RELATED

e Aims give a general direction and are not directly
measurable. They are useful for guiding the principles
of an entire program or subject area. An example
from the intended learning outcomes for Creative
Technology: “Graduates understand and can use
technology in the domain of software, algorithms and
physical interaction.” [27]

e Goals are more specific than aims in terms of scope,
but they can still relate to an entire program or
subject area. They can be formulated as a concrete
action, but don’t have to be. “Students can create
algorithms for solving simple problems.”

e Objectives are often written in behavioural terms
to describe more specific learning outcomes. They
should be observable and measurable. “Students can
implement a divide-and-conquer algorithm for solving
a problem.”

Note that we use the term ‘learning outcome’ to mean
the intended learning outcome of a course, which may or
may not be the actual learning outcome for a student.
This use of the term seems to be common in educational
literature, but there is no general agreement on it. Suskie
[23], for example, uses ‘learning outcomes’ to refer to the
actual outcomes of a course and ‘learning goals’ to refer to
the intended learning outcomes. She does make a similar
distinction in specificity between aims and objectives.

2.2 Automated feedback on programming
exercises

There are multiple ways to approach automated assessment
of programming assignments. An approach that has been
used since the 1960s is the use of automated testing tools
to check student submissions for correctness. Douce, Liv-
ingstone and Orwell [5] give an overview of tools that use
this approach in their review of the topic. They describe
several generations of these tools, starting with simple in-
put/output comparisons in a command-line tool and later
moving on to more sophisticated systems based on industry
tooling with web-based frontends.

All these tools have one commonality: they require well-
defined exercises with supplied test cases to function cor-
rectly. This means that this approach cannot provide any
value in a setting where the code written by students is
more based on their creativity, rather than a well-defined
assignment. In later years, other approaches to assessing
student code have been taken that do not depend on the
program having to generate a predefined output for some
input.

Keuning, Jeuring and Heeren [12] focus on these types of
feedback tools in their review of the space. They explicitly
excluded tools that solely depend on the testing approach
from their review, to focus on the other possible approaches.
They find that the 101 tools they surveyed use a total of
8 approaches to provide feedback to students, of which
automated testing is just one. In general, they find three
types of approaches: looking at actions the student takes
and comparing those with production rules for a correct
solution; looking at the final solution the student submits
and checking it against some constraints; and the data-
driven approach, where feedback is generated based on
past submissions by students.

For the specific case of programming, they find five more
approaches: automated testing; use of external tools, such
as the compiler, to check for correctness; basic static analy-
sis, which can be used to detect patterns and antipatterns;
the translation of programs into another language or a
simplified form; and intention-based diagnosis, where the

tool tries to find the students strategy and matches it with
known goals, plans and rules.

Two tools are of particular interest, because of their rele-
vance to this project: PROUST and the ACT Programming
Tutor.

PROUST was developed by Johnson and Soloway [10,
11] as a tool that could provide feedback on free-form
programming assignments where multiple solutions could
be correct. The tool knows some of the high-level goals
that would be required to solve the exercise and many
potential subgoals. All these goals are related to plans,
which can be matched with parts of the code in a student’s
solution [22].

The notion of goals and plans is useful in the context of
assessing learning objectives since these are often written
as goals a student should be able to achieve. By working
out the plans related to these goals, an automated tool
could be able to recognize the achievement of a learning
objective.

The ACT Programming Tutor (APT) created by Corbett
and Anderson [4] has a Skill Meter that shows the prob-
ability that the student has mastered that skill. APT is
also goal-oriented, but works with production rules based
on the current assignment: it won’t even let students take
steps that are not on a known path to a correct solution to
the problem. Each time the student has the opportunity
to apply a production rule, the tool updates the chance
that the student has learned the rule, taking into account
the previous chance, a general transition probability for
this rule and whether or not the rule was correctly applied
at this occasion.

While the Skill Meter has a similar goal to this paper,
their approach is not applicable in our context, because
it depends on keeping track of all the actions the student
takes when writing the code. Besides that, all assignments
need predefined production rules to arrive at a correct
answer, whereas the context of Creative Technology does
not have such strict assignments.

2.3 Curriculum and learning objectives

The most recent volume of the Computer Science curricu-
lum guidelines by the Joint Task Force on Computing
Curricula, a cooperation between the ACM and IEEE, was
published in 2013 [1]. The guidelines define a body of
knowledge of all areas and topics that should be part of a
computer science curriculum, organized into knowledge ar-
eas like “Operating Systems” and “Software Development
Fundamentals.” These areas are further organized into
units (like “Algorithms and Design”), which in turn define
a granular list of topics (e.g. “The concept and properties
of algorithms”) and also provide learning outcomes for
courses that teach these units.

The learning outcomes come with a rough categorization
in three “levels of mastery”:

e Familiarity: the student knows what a concept, or
the meaning of a concept, is, but is not able to apply
it.

e Usage: the student can concretely use a concept, for
example in a program or when doing analysis.

e Assessment: the student can argue for the selection
of a concept to use when solving a problem. This
also requires the student to understand available
alternatives.

These levels are inspired by Bloom’s Taxonomy [3], which
was revised by Anderson and Krathwohl et al. as Bloom’s
Revised Taxonomy [13]. They define 6 categories, which

can be seen as a hierarchy of understanding, going from
remembering and understanding through application and
analysis to evaluation and creation. There have been
several attempts to adapt Bloom’s Taxonomy for use in
a computer science course [9, 14, 25]. The focus in these
studies in mainly on the categorization of test questions,
which cover a much wider range than just writing code.
When looking at code, the main distinction seems to be
between the ‘apply’ and ‘create’ levels, although a clear
line is hard to find [25]. In the Curriculum Guidelines, this
is distinguished in the ‘usage’ and ‘assessment’ levels.

Finally, the guidelines give an overview of the trade-offs
made in the design in introductory courses on computer
science. In general, they advise against a solemn focus on
programming fundamentals, but otherwise, there are a lot
of choices a course designer could make, based on a variety
of circumstances. The main takeaway from this chapter in
the guidelines is that introductory courses come in a wide
variety, especially when diverse audiences are taken into
account.

3. LEARNING OUTCOMES
GRAMMING COURSES

To answer RQ1, we need to identify common learning out-
comes in programming courses and which of these outcomes
could assessable by an automated tool. As described in
[24], learning outcomes can be split according to their speci-
ficity. This is a useful categorization because only learning
outcomes that are concrete, observable and measurable,
can be assessed by an automated tool. This means that
for this research the focus will lie on learning objectives,
not on goals or aims.

3.1 Learning outcomes in the Curriculum
Guidelines

This analysis starts with a selection of the learning out-
comes defined in the Computer Science curriculum guide-
lines [1]. These are used as a basis for several Computer
Science and programming curricula, so they serve as a good
starting point. The learning outcomes in the knowledge
areas of Software Development Fundamentals (algorithms,
fundamental concepts and data structures) and Program-
ming Languages (object-oriented programming) are most
relevant for introductory programming courses.

IN PRO-

The learning outcomes in the guidelines are separated by
three levels of mastery, as described in section 2.3. Of these,
only the ‘usage’ and ‘assessment’ outcomes are relevant
when looking at code. The ‘familiarity’ outcomes are an
important part of understanding the course contents, but
the code a student writes cannot display their familiarity
with a for-loop if they are not also able to use it.

Next, the learning outcomes can be divided into ones that
are directly related to writing code, and those that are
about reading, explaining or analysing code or not related
to code at all. As a first step, all outcomes at the level
of ‘familiarity’ can be ruled out. On the level of ‘usage’,
the relation to coding is indicated by keywords like ‘write’,
implement’ and ‘apply’, while the keywords ‘identify’ or
‘reason’ signal explanation or analysis of code.

On the level of ‘assessment’, the scope of the assessment
plays a major role: a comparison of multiple approaches
cannot be judged in a coding assignment, but whether or
not the student chose the right approach can be. In general,
outcomes with the keyword ‘compare’ or ‘explain’ are not
directly related to coding, whereas ‘determine’, ‘identify’
or ‘choose’ indicate a decision that could be identified in
code.

Finally, the specificity of these learning outcomes is impor-
tant: they have to be concrete and observable, otherwise
they can not be assessed. For the outcomes that are rel-
evant to writing code, we assigned a label of ‘aim’, ‘goal’
or ‘objective’ guided by the descriptions and examples in
[24]. The outcomes in the guidelines were generally found
to be specific enough to be observed, so they were mostly
classified as objectives.

Using this selection procedure, 15 out of 31 learning out-
comes were found suitable for automated assessment. This
means that automated assessment of learning objectives
in code could be helpful, but can by no means stand on
its own.

Note also that this includes none of the ‘familiarity’ level
outcomes. This shows the importance of using other meth-
ods of assessment besides automated code analysis: stu-
dents who struggle with the application of concepts, but do
understand them well, have no possibility of demonstrating
their knowledge in an automated system.

3.2 Learning outcomes in Creative Technol-
ogy

Programming in Creative Technology is different from the
classical Computer Science way: the focus is on letting stu-
dents play with the code and create interactive programs,
rather than learning algorithms for the sake of it [15]. This
is also reflected in the official learning outcomes for pro-
gramming courses in Creative Technology [26], which have
a clear focus on the ‘usage’ level. (73% of the learning
outcomes, against 48% in the Curriculum Guidelines.)

Out of the 11 learning outcomes across two modules, 7 are
directly related to coding. Out of these 7, 3 are classified
as goals. The 4 objectives related to coding are concrete in
the actions the student can take, but the related concepts
are still kept vague (e.g. “determine an algorithm for a
given problem”, “understand and apply guidelines of code
quality”). To be assessable, these should first be worked
out into observable objectives that concretely specify the

content they cover.

3.3 Selection of learning objectives

Drawing inspiration from the curriculum guidelines [1], the
official Creative Technology learning outcomes [26] and
course materials used in Creative Technology [20, 21], we
defined five learning objectives to be further analysed and
used in the implementation of Apollo.

e Write a program that uses graphical commands to
draw to the screen.

e Usage: Write a program that uses looping constructs
for repetition.

Assessment: Choose the appropriate looping con-
struct for a given task.

e Compose a program using classes, objects and meth-
ods to structure the code in an object-oriented way.

e Implement message passing to enable communication
between classes in a complex program, instead of
using global variables.

e Use elementary vector operations to simulate physical
forces on an object.

The objectives are selected to give a fair representation of
different types of learning objectives and different degrees
of freedom in the resulting code. All are relevant to first
year courses of Creative Technology, in which students are
introduced to programming using Processing, a language
for visual art and new media. These five topics are a

selection of what students are expected to create with
Processing throughout the first year of the study.

4. RECOGNIZING LEARNING OBJEC-
TIVES IN CODE

Based on the five learning objectives chosen after answering
RQ1, RQ2 can be answered: how can achievement of these
learning objectives be recognized in code? For each of these
learning objectives, we will describe some of the goals and
plans that a tool could use to recognize these objectives
and the different aspects of these objectives that indicate
that the student has mastered the objective.

4.1 Graphical commands

Write a program that uses graphical commands to draw to
the screen.

For the use of graphical commands, the goal is relatively
simple: “Draw something on the screen.” The plan is
similarly simple: use one of the many drawing methods
built into Processing.

This is easy to detect, but the usage of one or two drawing
methods is not convincing evidence for the mastery of
graphical commands. On the other hand, students who
use the Transform functions like pushMatrix are likely

to have a good understanding of the drawing methods.

Students who use methods that were not covered in the
course could also be considered to have a higher chance of
understanding, going beyond what was explicitly taught.

Aspects that indicate mastery:

e Use of a variety of different drawing methods covered
in the course material

e Use of advanced drawing methods, like those in the
Transform category

e Use of methods that are not explicitly part of the
course material

4.2 Looping constructs
Write a program that uses looping constructs for repetition.

In the case of looping constructs, there is a wider variety
of goals and applicable plans, for example:

1. Repeat some code as long as a certain condition holds.

For this generic case, a while-loop is the only valid
plan.

2. Repeat n times, increasing a counter. This can be
done with either a for-loop or a while-loop, but using
a for-loop is the preferred solution.

3. Iterate over all items in an array. Similar to goal
2, there are multiple valid plans: a foreach-, for-,
or while-loop could all be used in this case. The
foreach-loop, however, is preferred over the others.

4. Tterate over all items in an array, also using the index
independently. While the goal is similar to goal 3,
the foreach-loop cannot be used, because access to
the index of the item in the array is required. See
figure 1 for an example.

for (int i = 0; i < ts.length; i++) {

Thing t = ts[il; // Get an element

s += i * t.getValue(); // Use indez directly
}

Figure 1. Example of an array iteration that re-
quires the use of an index

Aspects that indicate mastery:

e Use of different types of loops
e Use of loops in a variety of situations, e.g. for looping
over an array, but also for simple repetitions

4.2.1 The assessment case

A common pattern in Computer Science is to have learning
outcome on the ‘usage’ level that specifies multiple ways
of doing something and an accompanying objective on the
‘assessment’ level that requires a student to choose the best
option in a situation. In the case of looping constructs:
choose the appropriate looping construct for a given task.

Mastery of this outcome requires a mastery of the ‘usage’
level and:

e Use of the most specific appropriate looping construct

4.3 Object-oriented structure

Compose a program using classes, objects and methods to
structure the code in an object-oriented way.

There can be many high-level goals that lead the student
to create a class, but it generally comes down to the goal of
structuring the program: grouping related data and actions
together. The related plan is that of a class definition.

While having class definitions in your program is an indi-
cator that you have some understanding of object-oriented
programming, a student who writes a program with hun-
dreds of empty class definitions is not very likely to master
the learning objective. Fehnker and De Man [6] suggest
an object-oriented structure that should be used for in-
teractive Processing applications and also provide PMD
rules for automated detection of common mistakes in this
structure. If a program is structured into multiple classes
and none of the common design smells is detected, the
student has likely mastered this objective.

The aspects that indicate mastery of this objective:
e Use of classes with various methods

e Relatively few detected design smells in the code
structure

4.4 Message passing

Implement message passing to enable communication be-
tween classes in a complex program.

This objective is related to the previous objective of object-
oriented design, but included as a separate objective since
it receives dedicated attention in the course materials and
is not covered by the design smells in [6].

The goal related to this objective is sharing information
between classes. Take the case of a rocket and its fire tail
as an example. When the rocket moves, the tail should be
informed of the new position of the rocket to draw itself in
the correct position. There are multiple plans to achieve
this:

1. Using a global variable that holds the rocket’s posi-
tion. This variable is declared in the global scope
and used by both the Rocket class and the FireTail
class to determine the position where they should be
drawing. When the rocket moves, the Rocket class
modifies this global variable.

2. Using method parameter passing. The Rocket and
FireTail classes both store their positions in a local
variable. When the rocket moves, the Rocket class
modifies its local variable and calls a method on the
FireTail class to communicate its new position.

The second option is preferred, because the information
is not shared with other parts of the program that might
inadvertently change its value, but only with the parts that

actually need the information.
Indicators for mastery of this learning objective:

e No use of global variables that are changed in one
class and read in another

e Use of method parameters to pass information be-
tween classes

4.5 Simulating physics
Use elementary vector operations to simulate physical forces
on an object.

Forces, acceleration, velocity and position are modelled in
Processing using the PVector class, so physical formulas
are usually translated into operations on these vectors.
Shiffman [21] gives an example to apply a force to an
object with a certain mass, which is shown in figure 2.
This code represents the formula F = ma when the force
is applied to an object.

void applyForce(PVector force) {
PVector f = force.get();
acceleration.add(f.div(mass));

}

Figure 2. Function that applies a force to an object
with mass

This is an example plan for a common goal when dealing
with physics: “apply a force to an object with mass.” Some
other common goals in the course materials include: “cal-
culating the drag force for an object in a medium”, “model
gravity using constant downward force” or “calculate fric-
tion”.

If one or more plans related to known goals when working
with physics are found, then that is a good indicator for
mastery of this learning outcome:

e Use of a known plan for working with forces

There are, however, many more physical phenomena than
the 6 that are covered in the course materials. Since
creative students are encouraged to use their imagination
and make up their own forces, a more general indicator
for the use of physics is also required. In the very general
case:

e Use of operations on PVectors

This is only a weak indicator because it doesn’t necessarily
mean the student is modelling physics; a PVector could just
as well be used to do abstract linear algebra. If there are no
PVectors used in the code, however, this does mean that
the student is not using vector operations to do physical
modelling and is thus not showing any mastery of the
learning objective.

S. PROGRAMMATIC ASSESSMENT

In this section RQ3 is answered, by designing an auto-
mated tool called Apollo that can programmatically assess
the achievement of learning objectives, and by conducting
a preliminary validation of its results. Due to time con-
straints, this validation takes place on a small scale. The
contributions to the Atelier project will however be part
of a study over a longer timeframe, conducted as part of
that project.

Inspired by Corbett and Anderson [4], Apollo could be
used to model the chance that a student has achieved a
learning objective. In this context, learning objectives
are assumed to follow a two-state model: a student has
achieved the learning objective, or they didn’t. To enable
this, Apollo calculates the probability that a program

contains convincing evidence for the mastery of a learning
objective. This can then be used to update the probability
that the student has mastered the learning objective using
a probability updating rule.

Apollo uses static analysis to detect the relevant aspects
and indicators, based on the characteristics of the learning
objectives uncovered in answering RQ2. Since previous re-
search regarding static analysis of Processing projects [2, 6]
was successful in adapting PMD?! to work with Processing,
it was chosen to serve as the basis for Apollo.

5.1 Implementation

Since version 6, PMD includes a framework for defining
code metrics [16], which can produce a numeric output
based on the analysis of a class or method. Apollo imple-
ments every countable aspect of the learning objectives as
such a metric. Unfortunately, PMD is not able to directly
report these metrics to the caller, so for each learning ob-
jective, a ReportRule is defined that reports every metric
as a rule “violation”, such that the values can be read from
PMD’s output. Apollo listens for all reported violations
and uses the metrics to calculate the final probability for
each learning objective.

In general, many of the aspects rely on counting, for exam-
ple, the number of calls to a certain method or the number
of class definitions. A generic mapping function is used to
compute the probability of having convincing evidence for
each of these aspects, defined as:

1
Saet®) =1 T
This function defines a family of “S”-shaped curves in
the range [0,1), where the slope is determined by the
parameters a and b, which can be varied from aspect to
aspect, and from course to course.

5.1.1 Graphical commands

For the implementation of recognizing graphical commands,
Apollo uses a list of all graphical commands in Processing
[17], grouped by category (e.g. “Shape / Curves” or “Color
/ Setting”). A visitor that runs over the abstract syntax
tree of a program and visits all method calls, checks these
calls against the set of defined drawing methods and keeps a
list of the different methods that were used in the program.
This list only keeps track of which drawing methods are
used, not how often they are called, so in a program where
all drawing is done using the circle method, this list will
contain one entry for the circle method.

The different metrics are then calculated as follows:

1. Use of a variety of different drawing methods covered
in the course material

Filter the list of found drawing methods to those
categories of methods covered in the course materials.
The length of this list is the input for the function S,
mapping the number of different drawing methods
used to a probability.

2. Use of advanced drawing methods, like those in the
Transform category

Similar to the covered methods, but counting method
calls in the Transform category of drawing methods.

3. Use of methods that are not explicitly part of the
course material

'PMD is a popular tool for detecting code smells in Java,
available at https://pmd.github.io

These are the methods that were not part of the
count for the first metric. The length of this list is
again mapped to a probability using the function S.

Finally, these probabilities need to be combined into the
probability that the analysed program contains convincing
evidence that the student can write a program that uses
graphical commands to draw to the screen. This is done
as a weighted average of the results for the three aspects,
with the first aspect having weight 3, the second having
weight 2 and the last having weight 1. Students that do not
use the covered drawing functions sufficiently are unlikely
to master the drawing commands, even if they do use
advanced or non-covered methods.

5.1.2 Looping constructs

In the analysis of the learning objective for looping con-
structs, several different goals and related plans were un-
covered. Instead of listing and matching on every plan
related to using loops, Apollo tries to characterize loops
based on the characteristics of the different plans in the
analysis. This characterization differs for the three types
of loops:

For a while-loop, there are two defining features: (1) the
type of condition, either a relation (numeral or not), an
equality (numeral or not) or some other condition; and
(2) the variables used in the while loop, which have three
boolean properties indicating if the variable (a) is used to
dereference an array, (b) is being manipulated, or (c) is
being manipulated using a constant value (e.g., a uniformly
increasing counter).

In a for-loop, there are three features: (1) the variable used
as the iterator; (2) the type of condition, either a relation
with the length of an array, a different relation, an equality
or some other condition; and (3) how the iterator is used
in the loop body, with the same properties as the variables
in a while-loop.

A foreach-loop always iterates over an array and has no
other defining features.

The two metrics are then calculated as follows:
1. Use of different types of loops

The number of different types of loops used in the
program. So for a program that only uses for-loops,
the result would be 1; for a program that uses both
while- and foreach-loops, the result would be 2. This
count is mapped to a probability using the function

S.

2. Use of loops in a variety of situations, e.g. for looping
over an array, but also for simple repetitions

Using the characterization of all loops, map them
to a triple that includes the type of loop, whether
variables were used to dereference arrays and whether
variables were manipulated. The number of situations
loops are used in is determined to be the number of
different triples found in the program. This count is
again mapped to a probability using the function S.

The two metrics are averaged two calculate the probabil-
ity that the program contains convincing evidence that
the student is able to write a program that uses looping
constructs for repetition.

5.1.2.1 The assessment case.

The probability that a program contains convincing evi-
dence that a student can choose the appropriate looping
construct for a given task is calculated as the ratio of loops

that are the most appropriate in that situation over all used
loops. In general, a loop is assumed to be the appropriate
choice if there is not a more specific type of loop that can
be used. The characterization of the ‘usage’ case is used
to determine if a more specific loop would be applicable.

5.1.3 Object-oriented structure

The classes in a program are easy to count in PMD, using
a visitor over the AST that increments a counter every
time it finds encounters a class definition. To make sure
only classes that have some logic in them are counted, the
visitor takes an argument to specify the minimum number
of methods a class needs to define before being counted.
When counting classes in a Processing project, Apollo
uses a minimum of two methods, following the structure
suggested by Fehnker and De Man [6].

The metrics are calculated as follows:
1. Use of classes with various methods

This is simply the number of classes counted by the
visitor, converted to a probability using the function

S.

2. Relatively few detected design smells in the code
structure

For this metric, Apollo runs the PMD rules defined in
[6] to detect code smells in the program. Because the
chance of a small mistake is bigger in a large program,
the amount of smells is divided by the number of
classes counted for the first metric.

The function S is again used to convert this to a
probability, but with a slight difference: normally
the probability approaches 1 as the argument goes
to infinity, but in this case, a higher number repre-
sents a lower chance. Using a negative value for the
parameter b flips the function S around, starting at
1 and decreasing to approach 0.

The final probability that the program contains convincing
evidence that the student is able to compose a program
using classes, objects and methods to structure the code in
an object-oriented way, is calculated as the average of the
two metrics.

5.1.4 Message passing

To see if the student can apply message passing, Apollo
has to detect the use of global variables and the passing of
parameters between classes. To be able to do this, Apollo
uses the more advanced scoping features of PMD to check
where a variable or method is defined.

PMD can provide a map of declarations and all uses
throughout the program when looking at a scope. To
find all global variables that are used for message passing,
Apollo goes over the global scope to find all globally de-
clared variables and filters out all of the usages that are
in the global scope themselves. Only variables that are
mutated, either by being reassigned or by internal muta-
tion through a method call, are used for message passing.
With all global constants filtered out, Apollo counts the
number of uses of these global variables across classes to
count how often they are used for message passing.

The detection of parameter passing happens similarly: first,
all methods are found by recursively accessing every nested
scope. The usages of these methods are filtered to the
calls from outside the defining class because only message
passing between classes should be considered. To get a
number similar to that for global variable use, Apollo looks
at the arguments and only counts locally declared values
as instances of parameter passing.

Instead of calculating a probability for each aspect and
averaging those, the probability that the program contains
convincing evidence that the student can implement mes-
sage passing to enable communication between classes in
a complex program is calculated as the ratio of parameter
passing instances over the total amount of communication,
using both parameter passing and global variables.

5.1.5 Simulating physics

Detecting physics simulation is the only learning objective
that strongly depends on the detection of plans. Whereas
the other objectives could all be simplified using a char-
acterization of the correct solution, physics simulation
requires very specific plans to work correctly. To keep
things manageable, Apollo only considers operations on
PVectors when comparing physics plans and simply ignores
the calculation of other parts of the solution. Apollo recog-
nizes five plans for simulating physics, which are defined as
a list of method calls on different PVector instances. See
figure 3 for an example.

new PhysicsPlan("Apply acceleration",
new PVectorMethod("velocity", "add",
new PVector("acceleration")),
new PVectorMethod("position", "add",
new PVector("velocity")))

Figure 3. Example definition of a physics plan

First, all PVector operations in a program are identified in
a way similar to the detection of global variables, except
that this time all scopes are searched recursively. The
operations are grouped based on the lowest block they are
in, which can be a method body, a loop body etc. A match
between a block and a plan is found by looping over both
and comparing the statements in them. One limitation,
due to the limited type-inference available in PMD, is
that all PVectors on which operations are done have to be
declared as variables. If an operation is done directly on a
new object instantiation or a function parameter, it will
not be available in the scope.

The two metrics are calculated as follows:
1. Use of a known plan for working with forces

Apollo counts the number of times one of the five
specified physics plans matches with the code, as
explained before. The number of matches is converted
to a probability using the S function.

2. Use of operations on PVectors

Simply count the number of operations based on
the declared PVectors across all scopes and use the
function S to convert the number to a probability.

The final probability that the program contains convinc-
ing evidence that the student can use elementary vector
operations to simulate physical forces on an object, is cal-
culated as the weighted average of both metrics. The first
metric has weight 1, the second 2.5. This means that even
when no plans are recognized, a chance of 0.7 can still
be reached based on the number of PVector operations,
which is desired because of the mentioned limitations on
plan detection.

5.2 Calibration and validation

For an initial validation and determining the parameters
for converting counted metrics into probabilities, Apollo
was used on an old dataset of final student projects used
in the evaluation of [6]. While the full analysis of each
aspect of the five learning outcomes would be too lengthy

to repeat here, an example of the approach can be discussed
using the example of counting the use of drawing methods
covered in the course materials.

All programs used between 4 and 17 different drawing
methods, with a median of 9. The first quartile is at 8
drawing methods, the third quartile at 11. See figure 4.

4 6 8 10 12 14 16 18

Figure 4. Number of drawing methods used in
final student projects

To determine the correct parameters for the function S,
these statistics were mapped to the desired chance. The
first quartile is mapped to 50%, the median to 70% and
the third quartile to 95%. This means that a chance of
understanding above 95% is assigned to the 25% best
programs, above 70% to the 50% best programs etc.

For the covered drawing methods this means that 8 used
drawing methods maps to a 50% chance of being convincing
evidence, 9 used maps to 70% and 11 used to 95%. Using
a standard curve fitting algorithm the parameters for the
function S were determined to be a = 27748375.73 and
b=8.22.

For most of the learning objectives, the returned statistics
looked realistic and could be used to determine the required
parameters. Since the dataset originates from the first
module of programming in Creative Technology in which
the students were not yet introduced to simulating physics,
no useful data could be gathered for that objective.

5.2.1 Integration with Atelier

To test Apollo in practice, the tool was integrated with
Atelier. Atelier is used during programming tutorials for
students to upload their code and discuss it with teaching
assistants. Apollo created comments with its assessment
on every submission. To reduce the chance that teaching
assistants would interpret Apollo’s assessments as grading,
the probabilities calculated by Apollo were translated into
words, following a mapping defined in [18]. A chance of
20% or less is rendered as ‘improbable’, for example.

Teaching assistants were asked to reply with “+1” if they
think the assessment by Apollo is correct, or “-1” if they
think it isn’t. They were also asked to explain their com-
ment if they had time to do so. See figure 5 for an example.

Integrated with Atelier, Apollo ran on 65 student submis-
sions in the final week of the tutorial period where students
could ask for feedback on their projects. On 11 of these,
a teacher or teaching assistant indicated whether or not
they agreed with Apollo’s assessment. Out of these 11, 8
responses included “+1” to indicate agreement with Apollo
and 3 responses included neither “+1” nor “-1”. Message
passing and physics were both mentioned three times in
these comments. In the case of message passing, always
because Apollo indicated a low score on these programs
and the commenter mentioning they agree with that as-
sessment. With physics this was the case twice, and once
because there was some physics in the program that did
not seem to be picked up by Apollo.

The low response rate can at least partially be attributed
to the fact that Apollo was only deployed in the last week
of tutorials when many students were asking questions

Apollo (Plugin) at 6/21/2020, 4:08:07 PM

Based on this submission, Apollo thinks it is

- improbable that the student can write a program that uses graphical commands to
draw to the screen

- improbable that the student can write a program that uses looping constructs for
repetition

- almost certain that the student can compose a program using classes, objects and
methods to structure the code in an object-oriented way

- almost certain that the student can implement message passing to enable
communication between classes in a complex program

- uncertain that the student can use elementary vector operations to simulate
physical forces

Please reply with +1 if you think Apollo is correct, or -1 if you don't. If you have
time, please explain why!

Apollo is a research project that gives teachers and TAs insight into a student's
ability to apply explained concepts in their code. By replying, you help us improve
Apollo in the future. Thanks for helping out! - @Arthur Rump

Reply... g

o ow A

Figure 5. An example comment by Apollo in Ate-
lier

about their final projects. Teaching assistants rightly pri-
oritise helping as many students as possible over answering
questions in the limited time they have during a tutorial.

In separate interviews with two teaching assistants, they
both indicated to agree with the comments made by Apollo
most of the time. One of them indicated that they would
like to get more information on why Apollo made the as-
sessment, the other mentioned that the overall information
presentation in Atelier could be better and that it some-
times feels “rather spammy.” Both did find the provided
information useful when looking at a project uploaded by
a student.

6. CONCLUSIONS

The main question in this paper is concerned with how
the level of a student’s mastery of a programming
concept can be assessed by automatically analysing
their code? To conclude with a final answer to this
question, the three research questions leading up to it need
to be answered first.

RQ1 What are typical learning outcomes for introductory
programming courses and which of these are suitable for
automated assessment based on code analysis?

In section 3, we looked at learning outcomes in the Com-
puter Science Curriculum Guidelines and compared them
with learning outcomes for programming courses in Cre-
ative Technology. In the Curriculum Guidelines, 15 out
of 31 learning outcomes were found to be directly related
to writing code and specific enough to be assessable with
automated means. The learning outcomes for Creative
Technology were generally too vague or dependent on know-
ing the content of the course to concretely implement in
an automated tool. Based on these findings, a set of five
representative learning objectives was created to use for
the development of Apollo.

RQ2 How can the achievement of learning outcomes be
recognized in code?

In section 4 the five learning objectives were dissected to
find how achievement of these objectives could be recog-
nized in code. Soloway’s concept of goals and plans [22]
served as a useful basis for working this out. For each
learning objective, different aspects of the code were iden-
tified that would indicate that a student has achieved this

objective.

RQ3 How can an automated tool assess the level of mastery
of a concept by analysing code?

In section 5 the implementation of Apollo was described,
showing the different approaches taken for each learning
objective. Interesting to note here is the difference between
characterizing the plans matching a learning objective, or
trying to match a list of known plans. While the first is
easier to implement and gives more consistent results, the
second is easier to generalize to any learning objective for
which goals and plans can be worked out.

While validation of the tool was limited due to time con-
straints, feedback from teaching assistants does indicate
that Apollo is a useful addition in Atelier, even though the
presentation of all information is not optimal. Early signs
also tend to indicate that Apollo’s assessment is mostly
correct, but further validation is required to make a clear
statement on this. This will happen as part of a longer
term study in the Atelier project.

Returning to the main question of this paper, we can
conclude that it is possible to assess a student’s mastery of
a programming concept by automatically analysing their
code, but also that it requires a thorough specification of
what the student should be able to do at the end of a
course. It is also worth pointing out that not all learning
outcomes can be assessed this way, so automated code
analysis will not be able to replace all or even most of the
other methods of assessment used during a course.

6.1 Further research

The main goal of this paper is to lay the foundations of
a system that could ‘gauge the room’ in a digital tutorial
setting and provide teaching staff with a global overview of
students’ progress towards the desired learning outcomes.
In its current state, Apollo is able to assess individual
programs, but it cannot yet translate this to the chance that
a student has achieved a learning objective, nor combine
the results to provide this overview for a group of students.
Further research should look into ways to use Apollo’s
output towards this goal. A potential way to do this could
be a probabilistic update rule like probability kinematics
[8], which can be used to update the chance that a student
has mastered the learning objective given the probability
of convincing evidence reported by Apollo.

Related to this is the presentation of Apollo’s results. The
current textual representation was mainly chosen due to
limitations of the Atelier platform, but it would be inter-
esting to look into different ways to present the results
to users. This becomes especially important when the re-
sults are combined into student- and group-level numbers,
possibly tracked over time. Further research is needed to
determine the most intuitive way to present this data.

Finally, further research could be done into showing
Apollo’s results directly to students. While Apollo is
currently intended to be used by teaching staff, it could
be useful for students to know how they are progressing
through the course and in which areas they might need
more practice. Sadler [19] describes three requirements
for providing formative feedback to students: the student
has to know (1) the standard they should aim for, (2) how
their actual performance compares to the standard, and
(3) what action they can take to close the gap between
the desired and actual performance. Apollo can fulfil
the second of these requirements, but further research is
needed on if and how an automated tool could satisfy the
other two criteria.

7. REFERENCES

[1] ACM Computing Curricula Task Force ed. 2013. Com-
puter science curricula 2013: Curriculum guidelines for
undergraduate degree programs in computer science. ACM,
Inc.

[2] Blok, T. and Fehnker, A. 2017. Automated program
analysis for novice programmers. Proceedings of the 3rd
international conference on higher education advances (Jun.
2017).

[3] Bloom, B.S., Englehart, M.D., Furst, E.J., Hill, W.H.
and Krathwohl, D.R. 1956. Tazonomy of educational ob-
jectives. The classification of educational goals: Handbook
1: Cognitive domain. David McKay Co., Inc.

[4] Corbett, A.T. and Anderson, J.R. 1995. Knowledge
tracing: Modeling the acquisition of procedural knowledge.
User Modelling and User-Adapted Interaction. 4, 4 (1995),
253-278. DOL:https://doi.org/10.1007/bf01099821.

[5] Douce, C., Livingstone, D. and Orwell, J. 2005. Au-
tomatic test-based assessment of programming. Journal
on Educational Resources in Computing. 5, 3 (Sep. 2005),
4-es. DOL:https://doi.org/10.1145/1163405.1163409.

[6] Fehnker, A. and de Man, R. 2019. Detecting and ad-
dressing design smells in novice processing programs. Com-
munications in computer and information science. Springer
International Publishing. 507-531.

[7] Fehnker, A. and Mader, A. Atelier for creative program-
ming: Stimuleringsregeling open en online onderwijs.

[8] Jeffrey, R. 1987. Alias Smith and Jones: The testimony
of the senses. Erkenntnis. 26, (1987), 391-399. DOILhttps:
//doi.org/10.1007 /BFO0167725.

[9] Johnson, C.G. and Fuller, U. 2006. Is Bloom’s taxonomy
appropriate for computer science? Proceedings of the 6th
baltic sea conference on computing education research koli
calling 2006 - baltic sea '06 (2006).

[10] Johnson, W.L. and Soloway, E. 1984. Intention-based
diagnosis of programming errors. Proceedings of the 5th
national conference on artificial intelligence, austin, tz
(1984), 162-168.

[11] Johnson, W.L. and Soloway, E. 1985. PROUST:
Knowledge-based program understanding. IEEE Trans-
actions on Software Engineering. SE-11, 3 (Mar. 1985),
267-275. DOLhttps://doi.org/10.1109/tse.1985.232210.

[12] Keuning, H., Jeuring, J. and Heeren, B. 2019. A sys-
tematic literature review of automated feedback generation
for programming exercises. ACM Transactions on Com-
puting Education. 19, 1 (Jan. 2019), 1-43. DOIL:https:
//doi.org/10.1145/3231711.

[13] Krathwohl, D.R. 2002. A revision of Bloom’s tax-
onomy: An overview. Theory Into Practice. 41, 4 (Nov.
2002), 212-218. DOI:https://doi.org/10.1207 /315430421t
ip4104_ 2.

[14] Lister, R. and Leaney, J. 2003. Introductory program-
ming, criterion-referencing, and Bloom. Proceedings of
the 34th sigcse technical symposium on computer science
education - sigese '03 (2003).

[15] Mader, A., Fehnker, A. and Dertien, E. 2020. Tin-
kering in informatics as teaching method. Proceedings of
the 12th international conference on computer supported
education (2020).

[16] PMD - using and defining code metrics for custom
rules: 2017. https://pmd.github.io/pmd-6.24.0 /pmd
_userdocs__extending__metrics_howto.html. Accessed:

2020-05-28.

[17] Processing language reference (API): https://proces
sing.org/reference/. Accessed: 2020-05-27.

[18] Renooij, S. and Witteman, C. 1999. Talking prob-
abilities: Communicating probabilistic information with
words and numbers. International Journal of Approxi-
mate Reasoning. 22, 3 (Dec. 1999), 169-194. DOIL:https:
//doi.org/10.1016/s0888-613x(99)00027-4.

[19] Sadler, D.R. 1989. Formative assessment and the
design of instructional systems. Instructional Science. 18,
2 (Jun. 1989), 119-144. DOI:https://doi.org/10.1007/bf
00117714.

[20] Shiffman, D. 2015. Learning processing: A beginner’s
guide to programming images, animation, and interaction.
Elsevier Science.

[21] Shiffman, D. 2012. The nature of code.

[22] Soloway, E. 1986. Learning to program = learning to
construct mechanisms and explanations. Communications
of the ACM. 29, 9 (Sep. 1986), 850-858. DOLhttps:
//doi.org/10.1145/6592.6594.

[23] Suskie, L. 2018. Assessing student learning: A common
sense guide. Wiley.

[24] The aims, goals and objectives of curriculum - what
are the differences? 2014. https://thesecondprinciple.com
/instructional-design /writing-curriculum/. Accessed:
2020-05-07.

[25] Thompson, E., Luxton-Reilly, A., Whalley, J.L., Hu,
M. and Robbins, P. 2008. Bloom’s taxonomy for CS assess-
ment. Conferences in Research and Practice in Information
Technology Series. 78, (2008), 155-161.

[26] University of Twente: OSIRIS - course offerings: https:
// osiris.utwente.nl/student/ OnderwijsC atalogusZoek
Cursus.do. Accessed: 2020-04-30.

[27] 2015. Report on the bachelor’s programme Creative
Technology of the University of Twente. Quality Assurance
Netherlands Universities (QANU).

https://doi.org/10.1007/bf01099821
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1007/BF00167725
https://doi.org/10.1007/BF00167725
https://doi.org/10.1109/tse.1985.232210
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1207/s15430421tip4104_2
https://pmd.github.io/pmd-6.24.0/pmd_userdocs_extending_metrics_howto.html
https://pmd.github.io/pmd-6.24.0/pmd_userdocs_extending_metrics_howto.html
https://processing.org/reference/
https://processing.org/reference/
https://doi.org/10.1016/s0888-613x(99)00027-4
https://doi.org/10.1016/s0888-613x(99)00027-4
https://doi.org/10.1007/bf00117714
https://doi.org/10.1007/bf00117714
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://thesecondprinciple.com/instructional-design/writing-curriculum/
https://thesecondprinciple.com/instructional-design/writing-curriculum/
https://osiris.utwente.nl/student/OnderwijsCatalogusZoekCursus.do
https://osiris.utwente.nl/student/OnderwijsCatalogusZoekCursus.do
https://osiris.utwente.nl/student/OnderwijsCatalogusZoekCursus.do

	Introduction
	Background and related work
	Learning outcomes
	Automated feedback on programming exercises
	Curriculum and learning objectives

	Learning outcomes in programming courses
	Learning outcomes in the Curriculum Guidelines
	Learning outcomes in Creative Technology
	Selection of learning objectives

	Recognizing learning objectives in code
	Graphical commands
	Looping constructs
	The assessment case

	Object-oriented structure
	Message passing
	Simulating physics

	Programmatic assessment
	Implementation
	Graphical commands
	Looping constructs
	Object-oriented structure
	Message passing
	Simulating physics

	Calibration and validation
	Integration with Atelier

	Conclusions
	Further research

	References

