
Atelier – Tutor Moderated Comments in
Programming Education

Ansgar Fehnker1[0000−0002−5326−3432], Angelika Mader1[0000−0002−7065−2640],
and Arthur Rump1[0000−0002−4880−4994]

University of Twente
P.O Box 217

7500 AE Enschede
The Netherlands

Abstract. In the programming course of our engineering design degree
tutorials are the focal point of learning. This is especially so since we em-
ploy a tinkering based educational approach, in which students explore,
from the very beginning, the material by self-defined projects. The as-
signment defines ingredients to use and sets expectations, but students
are free to set their own design goals. In this setting tutorials are an
important place of feedback and learning, and we developed an online
platform that supports tutors during tutorials. This paper reports on the
educational philosophy and underpinnings, and results from applying the
tool in two first-year courses.

Keywords: Novice programmers, online platform, tutorials, semi-automated
feedback, community of practice

1 Introduction

This paper presents Atelier , an online platform that supports tutoring in pro-
gramming courses, emphasising collaboration and sharing1. It is built for the
Community of Practice [1] of students, tutors, and lecturers involved in teaching
programming, where personal feedback is a core element. Atelier is intended to
support, but not replace personal tutoring.

The platform has been developed in the context of our bachelor programme
Creative Technology (CreaTe), which is a multidisciplinary programme with a
base in computer science and electrical engineering, a strong focus on design,
and which includes elements of entrepreneurship. The programming courses of
CreaTe require students to use concepts that were covered in the course, but
they are free to define their own projects from the very beginning. We refer to
this approach as Tinkering [5]. The student fully owns the problem; there is no
example solution that students can work towards or that tutors can refer to.

In this setup, the focal point of learning programming is the tutorial, where
students work on their projects, supported by a team of tutors and lecturers.

1 The Atelier project is supported by SURF as part of its 2018 call on Open and
Online Education.



2 Fehnker, Mader and Rump.

Accordingly, individual feedback is a key element in this teaching approach. The
Atelier platform provides tutors with automated feedback that is initially only
visible to the tutors; feedback they can share and discuss with the student if
they see it fit.

Tools that automatically provide feedback have been around since at least
the 1970s. Keuning analysed 101 tools and found that the majority look at
knowledge of mistakes, and there is less attention for the quality of the programs
[4]. They found that testing is the most popular technique. Douce, Livingstone
and Orwell [2] describe several generations of these tools, which require well-
defined exercises with supplied test cases to function correctly. This is a very
different setting from ours, as we mainly use open exercises. Keuning studied
the use of static analysis tools similar to ours and found that novices often to
not fix issues that such tools report, especially problems with design [4]. Keuning
theorises that students may simply not know how to fix their code.

Our approach differs from many automated tools in literature with regards
to two important aspects. We consciously chose not to use automated tools to
replace tutor-student interaction, and we also do not use them for grading. They
are used to assist tutors, during tutorials, to provide feedback that is more trans-
parent and consistent. This gives rise to the research question whether warnings
that are given to a student by a tool, differ in effectiveness from automated
warnings that a tutor shares and follows up.

2 The Atelier platform

The aim of Atelier is to support the feedback process on student-defined projects
in CreaTe. Tool support is primarily aimed at helping the tutor. Atelier uses two
tools, Zita to highlight potential programming issues [3], and Apollo to estimate
whether a student achieves certain learning outcomes [6]. Importantly, both tools
are not included for marking, or to substitute tutor feedback, but are meant to
aid the tutor.

Setting. The platform Atelier was developed for use during programming tutori-
als when students work on exercises that relate to topics covered by lectures. In
line with the tinkering approach, students have to incorporate what they have
learned in a self-defined project. The tutor should give the student feedback on
their code verbally, and the online platform should not substitute this process,
but complement it.

Usage scenario. The primary usage scenario is illustrated in Fig. 1. The student
shared the program with a tutor, e.g. via a QR code. During the exchange, the
tutor can make notes and comment on the program or individual lines of code.
The tutor is also presented with automated Zita comments which are initially
only visible to the tutor. In this case, the tutor decided to make the comment
visible and further elaborate on the warning. The student was able to reply, and
the tutor involved another tutor in the discussion.



Atelier – Tutor Moderated Comments in Programming Education 3

Fig. 1: An exchange from a tutorial, illustrating the main usage scenario. Names
have been replaced by generic labels “a student”, “some TA”, and “other TA”.

Implementation. Atelier is available as an open-source project on GitHub2. The
two plugins we developed, Zita and Apollo, are available under the same GitHub
organisation. These projects are not part of the main program, because they are
specific to Processing and to our courses.

3 Experience and Observations

Context. The first year of the CreaTe bachelor is organised in four modules.
A module is an integrated study unit that has several components; for some of
these modules this includes programming. Atelier was first deployed in module
4 of the first year, which includes an algorithms course.

The course started about a month into the first nationwide lockdown in the
Netherlands in response to the COVID19 pandemic. To maintain the spirit of
traditional tutorials we chose a synchronous form of teaching, with one main
conference, a queuing system for help requests, and breakout rooms.

We used a similar setup for module 1 in the next academic year, for a new
cohort of students. This module includes an introductory programming course,
with 5 weeks of tutorials and lectures that cover the basics of programming, like
variables, decisions and loops, up to objects, classes and arrays.

2 See https://github.com/creativeprogrammingatelier/atelier

https://github.com/creativeprogrammingatelier/atelier


4 Fehnker, Mader and Rump.

Usage. Over the two modules we had
211 students and 43 tutors and lectur-
ers use Atelier . Students shared in to-
tal 809 programs. Users could indicate
whether we could use their data for
research. This was permitted by 128
students and 33 tutors and lecturers.
This left 499 student submissions for
analysis, which are used in the remain-
der. Fig.2 shows that in the research
data set, less than 33% of the students
submitted 4 or more programs.

Fig. 2: Histogram of the number of sub-
mission per student.

Evaluation. The tools Zita and Apollo generated 3864 comments, of which 312
were made visible to students. This is a low percentage, and tutors indicated that
this is in part because of the repetitive nature of Zita comments. For example,
one submission received 95 warnings of the same type – a naming convention –
but only 2 of them were made visible.

An interesting observation could be made with respect to the effectiveness of
sharing Zita comments. We distinguish between comments that were shared with
the student, and comments that were shared and followed up by an additional
comment. To measure the effectiveness we define for each submission a window
of future submissions and checked whether the same of the 35 Zita rules issued
another warning within the window.

Fig. 3 depicts the results for window sizes up to 5. The left figure shows, e.g.,
that 54% of the students avoids repeating a mistake relating to a shared warning
in the next submission (window size 1). Unfortunately, this share decreases as
the window size increases. Five submissions later 78% repeat the same mistake.
Note, that the total numbers decline with increasing window size, since there
will be fewer submissions by the same student for larger window sizes.

The right figure show that Zita comments that were followed up were some-
what more effective, even though that effect also waned with an increasing win-
dow size. Note, that the same mistake may be repeated for various reasons, for
example because a student finds different ways to violate the same rule.

Threats to Validity. The module 4 course had only 8 weeks of lectures and
tutorials, while the module 1 course had only 5 weeks of tutorials, for a different
cohort. This means that we could only measure the use of a newly developed
tool for a short period. The effect of feedback may change if students are exposed
to it for a longer time, positively because of consistent messaging, or negatively
because they get used to it.

When considering the effectiveness of tutor feedback, one also has to keep
in mind that the student knows the person, and also knows that this person
may assess them in the future. This is both a threat to the validity, but also a
strength because it introduces a personal aspect into the process.



Atelier – Tutor Moderated Comments in Programming Education 5

Fig. 3: Number and share of repeated mistakes, depending on whether a Zita
comment was followed up or not.

4 Conclusions

For a bachelor programme which combines design with engineering approaches,
and which has a very diverse student population, we use a teaching method
for programming that emphasises creativity, ownership and individual solutions.
Given these individual learning paths, providing good feedback is one of the
key ingredients of the approach. This paper introduced the platform Atelier
developed for this purpose, integrating the tool Zita for automated feedback.
Tutors can give feedback on a program or on certain lines of code, and use
automated feedback as a starting point for further discussion, which proved to
be somewhat effective.

Currently, Atelier is still limited to working with projects created using Pro-
cessing. This limitation will stay in place while we work to improve the plat-
form, but we are planning to remove these limitations and enable Atelier to be
used with other programming languages at a later stage.

References

1. Coenders, M.: De Canon van het Leren, chap. Community of Practice - Etienne
Wenger, pp. 126–136. Vakmedianet Management B.V. (2012)

2. Douce, C., Livingstone, D., Orwell, J.: Automatic test-based assessment of pro-
gramming. Journal on Educational Resources in Computing 5(3), 4–es (9 2005).
https://doi.org/10.1145/1163405.1163409

3. Fehnker, A., de Man, R.: Detecting and addressing design smells in novice process-
ing programs. In: Communications in Computer and Information Science. Springer
(2019). https://doi.org/10.1007/978-3-030-21151-6 24

4. Keuning, H.: Automated Feedback for Learning Code Refactoring. Ph.D. thesis,
Open Universiteit (2020)

5. Mader, A., Fehnker, A., Dertien, E.: Tinkering in informatics as teaching method.
In: CSEDU 2020. Scitepress (2020). https://doi.org/10.5220/0009467304500457

6. Rump, A., Fehnker, A., Angelika, M.: Automated assessment of learning objectives
in programming assignments. In: ITS 2021. Springer (2021)

https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1007/978-3-030-21151-6_24
https://doi.org/10.5220/0009467304500457

	Atelier – Tutor Moderated Comments in Programming Education

