Automation Support for Giving Feedback in Learning
Programming by Doing

Arthur Rump
University of Twente
Enschede, The Netherlands
arthur.rump@utwente.nl

Abstract

Providing effective feedback on open-ended programming assign-
ments is a challenge, particularly at scale. This challenge impacts
student learning, as timely and accurate feedback is crucial to im-
prove their programming and program design skills. We intend to
develop an approach leveraging automation to support the feedback
process, without requiring changes to assignments that enable full
automation. This method aims to improve the consistency and effi-
ciency of giving feedback, helping students learn more effectively.

CCS Concepts

« Applied computing — Computer-assisted instruction; « So-
cial and professional topics — Student assessment; Computer
science education; Computer engineering education.

Keywords

automated assessment, automated feedback, programming educa-
tion, open-ended assignments, learning-by-doing

ACM Reference Format:

Arthur Rump. 2025. Automation Support for Giving Feedback in Learning
Programming by Doing . In Proceedings of the 30th ACM Conference on
Innovation and Technology in Computer Science Education V. 2 (ITiCSE 2025),
June 27-FJuly 2, 2025, Nijmegen, Netherlands. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3724389.3731300

1 Context and motivation

Learning to program requires practice, but that is not all: actually
learning from practice requires receiving feedback. In programming
education this is commonly achieved through automated feedback:
in many introductory programming courses, exercises come with
test cases to immediately tell a student whether they implemented
a function correctly. This works well for small and strictly defined
exercises, where students write a single function or a small program
with strictly defined input/output relations. However, we don’t just
want to teach our students how to write a single function or a
small program. If we want them to learn how to design and build
more complex programs, the principle of constructive alignment
[1] tells us that students should also practice with and be assessed
on designing and building more complex programs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2025, Nijmegen, Netherlands.

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1569-3/2025/06

https://doi.org/10.1145/3724389.3731300

Practising design skills requires more open-ended assignments
where students can actually make design choices in their programs
[8]. A key point of our open-ended assignments is that students
are typically not required to adhere to a given interface; not on
the method or class level, nor for the user interface. For some
assignments students are free to determine the functionality of
their programs, but even when functional requirements are given,
these tend not to specify the required user interactions in detail.

These open-ended assignments result in more complex programs,
which amplifies the challenge of giving effective and timely feed-
back, especially with a large group of students. There are currently
few tools available that provide effective automation support in
this context, so the current feedback practice relies on a large team
of teaching assistants. While there are certain benefits to this ap-
proach, it does introduce a risk of inconsistent assessment and
feedback [9].

As we are moving away from purely summative assessments
towards more formative assessments throughout the course, the
impact of these challenges increases. Our goal is to develop an
automation-assisted workflow that supports teachers and teaching
assistants in giving feedback, combining both automated and man-
ual feedback. We are not trying to fully automate assessment of
these assignments, but rather to support the work done by teachers
and teaching assistants.

2 Background

Tools for automated assessment and feedback are a well-researched
topic, especially in programming education [2]. Most of these tools,
however, work well on small and strictly defined exercises that can
be evaluated with simple unit tests [10]. Tools that apply techniques
other than testing are often difficult to configure and hard to adapt
to new exercises [6]. These limitations can disincentivize students
from building creative or innovative solutions [4].

A constructivist view of education argues that open-ended as-
signments are necessary for learning, for example in the form of a
driving question in project-based learning [7]. These assignments
are sometimes called ill-defined, because there is no definite end
result students are expected to produce [3]. In practice, some as-
sessment criteria are more strictly defined than others, opening the
door for at least partial automation [12].

There has been recent work that aims to combine manual and
automated assessment, either by auto-grading some criteria and
extracting relevant information for manual grading [5] or by us-
ing generative Al to provide suggested assessments [11]. These
approaches typically aim to automate as much as possible and then
let an assessor take over for manual assessment. While this is a


https://orcid.org/0000-0002-4880-4994
https://doi.org/10.1145/3724389.3731300
https://doi.org/10.1145/3724389.3731300

ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands.

good first step, more complex assignments could benefit from more
complex interactions of automation and manual assessment.

This aligns with a need for customizability and flexibility, which
has recently been found as one of the most-valued features in
automated assessment tooling [14]. This includes compatibility
with languages and frameworks used in a course, but also being
able to tailor a tool to the unique assessment needs of that course.

3 Problem statement

Giving feedback on open-ended programming assignments is still
largely a manual task, which can take a lot of time. When distributed
across many people, which is necessary when there are many stu-
dents in a course, there is a risk of inconsistent assessments and
inconsistent feedback. Moving away from purely summative as-
sessments towards more formative assessments throughout the
course further exacerbates these challenges. The use of open-ended
assignments is an important part of the learning experience, so the
use of automation should not force changes in the assignments that
come at the expense of this quality.

4 Research goals

Our aim is to develop a tool-assisted workflow that uses automation
to support giving feedback on open-ended programming assign-
ments. The main goals are to increase consistency and reliability of
feedback and assessment and to increase the efficiency of providing
this feedback to students. Full automation is an explicit non-goal, so
one of the challenges is to find a workflow that effectively combines
automated and manual feedback. Within the workflow, we want to
ensure that constructive alignment, validity and transparency are
at least maintained at their current levels.

5 Research methods

Our first focus is on developing a workflow that combines man-
ual and automated assessment. Given the goal to improve consis-
tency and efficiency, it makes sense to evaluate a prototype of this
workflow empirically by comparing assessments performed using
a traditional paper rubric with assessments performed using our
prototype. The exact details of this study, like the dataset to use,
are still to be determined.

Working from this prototype, we can then consider the usability
of the workflow to give continuous formative feedback throughout
a course. The evaluation of our designs on this front would be more
focused on the experience of teaching assistants and students who
are using the workflow.

6 Current and expected contributions

Our first contribution concerns the requirements of an automated
assessment tool [13]. One of the conclusions from that study is

Arthur Rump

that teachers are not looking for a tool that performs automatic
grading, but would rather have a tool that supports them in the
assessment process. The main contribution we aim to make is an
empirically evaluated workflow and tool to support the assessment
of open-ended programming assignments.

References

[1] John Biggs and Catherine Tang. 2011. Teaching for quality learning at univer-
sity (4th ed.). McGraw-Hill/Society for Research into Higher Education/Open
University Press.

[2] Anderson Pinheiro Cavalcanti, Arthur Barbosa, Ruan Carvalho, Fred Freitas, Yi-
Shan Tsai, Dragan Gasevi¢, and Rafael Ferreira Mello. 2021. Automatic feedback
in online learning environments: A systematic literature review. Computers and
Education: Artificial Intelligence 2 (2021), 100027. doi:10.1016/j.caeai.2021.100027

[3] Philippe Fournier-Viger, Roger Nkambou, and Engelbert Mephu Nguifo. 2010.
Building Intelligent Tutoring Systems for Ill-Defined Domains. In Studies in
Computational Intelligence. Springer Berlin Heidelberg, 81-101. doi:10.1007/978-
3-642-14363-2_5

[4] Marcelo Guerra Hahn, Silvia Margarita Baldiris Navarro, Luis De La
Fuente Valentin, and Daniel Burgos. 2021. A Systematic Review of the Effects of
Automatic Scoring and Automatic Feedback in Educational Settings. IEEE Access
9 (2021), 108190-108198. doi:10.1109/access.2021.3100890

[5] Henry Hickman and Tim Bell. 2024. Automated Assessment: Does It Align
With Teachers’ Views?. In Proceedings of the 19th WiPSCE Conference on Primary
and Secondary Computing Education Research (WiPSCE 24, Vol. 10). ACM, 1-10.
doi:10.1145/3677619.3678113

[6] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2019. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Transactions on Computing Education 19, 1 (11 Jan. 2019), 1-43. doi:10.1145/
3231711

[7] Joseph S. Krajcik and Namsoo Shin. 2014. Project-Based Learning. In The
Cambridge Handbook of the Learning Sciences, R. Keith Sawyer (Ed.). Cambridge
University Press, 275-297. doi:10.1017/cb09781139519526.018

[8] Angelika Mader, Ansgar Fehnker, and Edwin Dertien. 2020. Tinkering in Infor-
matics as Teaching Method. In Proceedings of the 12th International Conference on
Computer Supported Education. SCITEPRESS - Science and Technology Publica-
tions. doi:10.5220/0009467304500457

[9] Marcus Messer, Neil Brown, Michael Kolling, and Miaojing Shi. 2025. How
Consistent Are Humans When Grading Programming Assignments? doi:10.
35542/osf.io/nd6qy_v2

[10] Marcus Messer, Neil C. C. Brown, Michael Kélling, and Miaojing Shi. 2024. Auto-
mated Grading and Feedback Tools for Programming Education: A Systematic
Review. ACM Transactions on Computing Education 24, 1 (Feb. 2024), 1-43.
doi:10.1145/3636515

Goda Nagakalyani, Saurav Chaudhary, Varsha Apte, Ganesh Ramakrishnan, and
Srikanth Tamilselvam. 2025. Design and Evaluation of an Al-Assisted Grading
Tool for Introductory Programming Assignments: An Experience Report. In
Proceedings of the 56th ACM Technical Symposium on Computer Science Education V.
1 (Pittsburgh, PA, USA) (SIGCSE TS 2025). Association for Computing Machinery,
New York, NY, USA, 805-811. doi:10.1145/3641554.3701913

[12] Arthur Rump and Vadim Zaytsev. 2022. A refined model of ill-definedness
in project-based learning. In Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings
(MODELS °22). ACM, 115-122. doi:10.1145/3550356.3556505

Arthur Rump, Vadim Zaytsev, and Angelika Mader. 2025. Requirements for
an Automated Assessment Tool for Learning Programming by Doing. In 2025
IEEE 18th International Conference on Software Testing, Validation and Verification
(ICST). IEEE.

Barrett Ruth and John R. Hott. 2025. Auto-grading in Computing Education:
Perceptions and Use. In Proceedings of the 56th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE TS 2025). ACM, 1008-1014. doi:10.1145/
3641554.3701900

—_
o

[13

=
&


https://doi.org/10.1016/j.caeai.2021.100027
https://doi.org/10.1007/978-3-642-14363-2_5
https://doi.org/10.1007/978-3-642-14363-2_5
https://doi.org/10.1109/access.2021.3100890
https://doi.org/10.1145/3677619.3678113
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1017/cbo9781139519526.018
https://doi.org/10.5220/0009467304500457
https://doi.org/10.35542/osf.io/nd6qy_v2
https://doi.org/10.35542/osf.io/nd6qy_v2
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3641554.3701913
https://doi.org/10.1145/3550356.3556505
https://doi.org/10.1145/3641554.3701900
https://doi.org/10.1145/3641554.3701900

	Abstract
	1 Context and motivation
	2 Background
	3 Problem statement
	4 Research goals
	5 Research methods
	6 Current and expected contributions
	References

