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Abstract

Providing effective feedback on open-ended programming assign-
ments is a challenge, particularly at scale. This challenge impacts
student learning, as timely and accurate feedback is crucial to im-
prove their programming and program design skills. We intend to
develop an approach leveraging automation to support the feedback
process, without requiring changes to assignments that enable full
automation. This method aims to improve the consistency and effi-
ciency of giving feedback, helping students learn more effectively.
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1 Context and motivation

Learning to program requires practice, but that is not all: actually
learning from practice requires receiving feedback. In programming
education this is commonly achieved through automated feedback:
in many introductory programming courses, exercises come with
test cases to immediately tell a student whether they implemented
a function correctly. This works well for small and strictly defined
exercises, where students write a single function or a small program
with strictly defined input/output relations. However, we don’t just
want to teach our students how to write a single function or a
small program. If we want them to learn how to design and build
more complex programs, the principle of constructive alignment
[1] tells us that students should also practice with and be assessed
on designing and building more complex programs.
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Practising design skills requires more open-ended assignments
where students can actually make design choices in their programs
[8]. A key point of our open-ended assignments is that students
are typically not required to adhere to a given interface; not on
the method or class level, nor for the user interface. For some
assignments students are free to determine the functionality of
their programs, but even when functional requirements are given,
these tend not to specify the required user interactions in detail.

These open-ended assignments result in more complex programs,
which amplifies the challenge of giving effective and timely feed-
back, especially with a large group of students. There are currently
few tools available that provide effective automation support in
this context, so the current feedback practice relies on a large team
of teaching assistants. While there are certain benefits to this ap-
proach, it does introduce a risk of inconsistent assessment and
feedback [9].

As we are moving away from purely summative assessments
towards more formative assessments throughout the course, the
impact of these challenges increases. Our goal is to develop an
automation-assisted workflow that supports teachers and teaching
assistants in giving feedback, combining both automated and man-
ual feedback. We are not trying to fully automate assessment of
these assignments, but rather to support the work done by teachers
and teaching assistants.

2 Background

Tools for automated assessment and feedback are a well-researched
topic, especially in programming education [2]. Most of these tools,
however, work well on small and strictly defined exercises that can
be evaluated with simple unit tests [10]. Tools that apply techniques
other than testing are often difficult to configure and hard to adapt
to new exercises [6]. These limitations can disincentivize students
from building creative or innovative solutions [4].

A constructivist view of education argues that open-ended as-
signments are necessary for learning, for example in the form of a
driving question in project-based learning [7]. These assignments
are sometimes called ill-defined, because there is no definite end
result students are expected to produce [3]. In practice, some as-
sessment criteria are more strictly defined than others, opening the
door for at least partial automation [12].

There has been recent work that aims to combine manual and
automated assessment, either by auto-grading some criteria and
extracting relevant information for manual grading [5] or by us-
ing generative Al to provide suggested assessments [11]. These
approaches typically aim to automate as much as possible and then
let an assessor take over for manual assessment. While this is a
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good first step, more complex assignments could benefit from more
complex interactions of automation and manual assessment.

This aligns with a need for customizability and flexibility, which
has recently been found as one of the most-valued features in
automated assessment tooling [14]. This includes compatibility
with languages and frameworks used in a course, but also being
able to tailor a tool to the unique assessment needs of that course.

3 Problem statement

Giving feedback on open-ended programming assignments is still
largely a manual task, which can take a lot of time. When distributed
across many people, which is necessary when there are many stu-
dents in a course, there is a risk of inconsistent assessments and
inconsistent feedback. Moving away from purely summative as-
sessments towards more formative assessments throughout the
course further exacerbates these challenges. The use of open-ended
assignments is an important part of the learning experience, so the
use of automation should not force changes in the assignments that
come at the expense of this quality.

4 Research goals

Our aim is to develop a tool-assisted workflow that uses automation
to support giving feedback on open-ended programming assign-
ments. The main goals are to increase consistency and reliability of
feedback and assessment and to increase the efficiency of providing
this feedback to students. Full automation is an explicit non-goal, so
one of the challenges is to find a workflow that effectively combines
automated and manual feedback. Within the workflow, we want to
ensure that constructive alignment, validity and transparency are
at least maintained at their current levels.

5 Research methods

Our first focus is on developing a workflow that combines man-
ual and automated assessment. Given the goal to improve consis-
tency and efficiency, it makes sense to evaluate a prototype of this
workflow empirically by comparing assessments performed using
a traditional paper rubric with assessments performed using our
prototype. The exact details of this study, like the dataset to use,
are still to be determined.

Working from this prototype, we can then consider the usability
of the workflow to give continuous formative feedback throughout
a course. The evaluation of our designs on this front would be more
focused on the experience of teaching assistants and students who
are using the workflow.

6 Current and expected contributions

Our first contribution concerns the requirements of an automated
assessment tool [13]. One of the conclusions from that study is
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that teachers are not looking for a tool that performs automatic
grading, but would rather have a tool that supports them in the
assessment process. The main contribution we aim to make is an
empirically evaluated workflow and tool to support the assessment
of open-ended programming assignments.
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