Requirements for an Automated Assessment Tool for
Learning Programming by Doing

Arthur Rump
University of Twente
arthur.rump @utwente.nl

Abstract—Assessment of open-ended assignments such as
programming projects is a complex and time-consuming task.
When students learn to program, however, they benefit from
receiving timely feedback, which requires an assessment of
their current work. Our goal is to build a tool that assists in
this process by partially automating the assessment of open-
ended programming assignments. In this paper we discuss the
requirements for this tool, based on interviews with teachers and
other relevant stakeholders.

Index Terms—automated assessment, programming education,
open-ended assignments, learning-by-doing

I. INTRODUCTION

Learning to program requires feedback, especially formative
actionable feedback when it comes to complex issues like style
and structure [1]. Formative practices are known to motivate
students and strengthen their embrace of the material. However,
providing students with feedback can be difficult and time-
consuming, especially when teaching large groups. Many tools
are available that use unit testing to provide automated feedback
on small, closed exercises [2]-[4]. Students will, however,
need more open-ended assignments to practice their program
design skills [5] when they go beyond the basics of syntax and
simple algorithms. Since students need the freedom to make
design choices in their projects, every submitted project will
be different. In such cases unit tests or comparison with model
solutions are no longer a feasible way to automate assessment
[6].

Our goal is to develop a tool that supports the assessment
process of large open-ended programming assignments. We
focus on two programming projects from our university as
a case study. In one project, the students are tasked with
implementing a multiplayer board game with a client/server
architecture. Beyond what was covered in class and the rules
of the game, students receive no further guidance or boilerplate
code to start from. In the other project, students are even free to
choose what they build for the project, as long as they include
topics covered in the course. We aim, however, for our tool
to be useful in any environment where open assignments are
used to teach software design.

Our research question for the project is: How can a tool
support the assessment of open-ended programming assign-
ments? In this paper, we aim to find out what our stakeholders
want such a tool to do: What requirements do stakeholders
have for a tool that supports the assessment of open-ended

Vadim Zaytsev
University of Twente
vadim @ grammarware.net

Angelika Mader
University of Twente
a.h.mader @utwente.nl

programming assignments? To answer this question, we have
conducted interviews with our stakeholders, as described in
sec. III. The results from these interviews in the form of a
list of requirements is described in sec. IV. In sec. V we
discuss these results and give some indication of the feasibility
of implementing these requirements based on a design and
prototype we built. Sec. II introduces some background on
assessment, open-ended assignments and automated assessment
tools.

II. BACKGROUND
A. Formative and summative assessment

First we need to distinguish between two types of assessment:
Sformative assessment and summative assessment. Formative
assessment has the goal of providing feedback to a student
so that they can improve their work, learn and resubmit it
[1], whereas summative assessment merely summarises the
student’s performance, usually expressing it as a grade [7].
Both types of assessment start with an evaluation of the current
performance, but for formative feedback the main goal is to
provide feedback during the learning, when it is not yet too
late to communicate the gap between the current level and
reaching the learning goal, and aid in forming strategies to
close it [7].

B. Intended learning outcomes

The goal we want students to achieve is commonly referred
to as the intended learning outcome (ILO). Each ILO is a
statement of what a student is expected to have learned at the
end of a lecture, a course or study unit or even at the end of a
full programme. These statements focus on student behaviour:
they describe an action the student should be able to take
after finishing the particular unit of study, like “At the end of
this lecture, students can ...” or “After following this course,
you will be able to ...” In English, the next parts of these
statements will naturally be a verb and some object. The verb
is used to describe the action a student should be able to take,
and the object describes the relevant course topic. The object
and verb cover two aspects of learning: the content that should
be learned, as well as the level of understanding that is desired.
The latter is often categorised through a taxonomy like Bloom’s
taxonomy [8] or the SOLO taxonomy [9], which link certain
verbs with a corresponding level of cognitive processing.



Including a verb in an ILO not only indicates the level of
understanding students are expected to acquire of that content,
but also helps to design learning activities and assessment tasks
that actually teach students how to perform that activity. If our
intention is for students to learn how to design and develop
software of average size (10-20 classes), then students should
actually spend time designing and developing software during
the course. If the only learning activities are, for instance,
lectures on the principles of object-oriented programming, it
would not be surprising if students do not meet the intended
outcome of being able to develop software by themselves.
Similarly, a written exam is not well-suited to assess this
ability, so a task should be chosen where students can actually
demonstrate their ability to develop software. This principle is
called constructive alignment: learning activities, assessment
tasks, and ILOs — all three should be aligned within each
course [10].

C. Open-ended assignments

Following the principles of constructive alignment, a stu-
dent’s performance in program design is best assessed in a
larger task where they actually have to make design choices.
A constructivist view of education also argues that these open-
ended assignments are necessary for learning. An open question
or problem is the starting point for learning in forms of learning
with a base in this tradition, like the driving question in project-
based learning [11], [12] or wicked problems in challenge-based
learning [13], [14].

Open-ended projects are different from typical assignments
assessed by automated tools, because there exists no single
definite solution to which submissions can be compared. Open
problems that do not have a definite solution are sometimes
called ill-defined — the indefinite endpoint is one of three
criteria given by Simon [15] for calling a problem ill-defined.
Ill-definedness is not a binary classification, however, but a
continuum, ranging from well-defined to ill-defined [16]. Later
work describes the space of ill-definedness along two axes: the
number of alternative solution strategies and implementation
variability within a strategy, and the objective solution verifi-
ability [17]. We have recently extended the verifiability axis
and used the model to analyse two programming projects [6].
Rather than trying to classify a project as well- or ill-defined
as a whole, we considered the assessment criteria individually.
We found that even though students can get a lot of freedom to
make decisions in an open-ended assignment, many criteria are
on the well-defined side of the spectrum, making automated
assessment of these criteria feasible.

D. Automated assessment tools

Automated assessment tools for programming assignments
have existed for a long time and use a variety of dynamic and
static techniques, but most are designed for small, well-defined
exercises that can be evaluated with input/output tests or by
comparing to model solutions provided by teachers [2], [3],
[18], [19]. Configuring these tools to support new exercises is

often difficult or even impossible [20] and many are known
disincentivize creative or innovative solutions [21].

More recently, tools have started using data-driven techniques
[22]-[24], which seems a more promising approach for open-
ended assignments. By analysing patterns in historical student
submissions, these tools can learn to recognize valid solutions
without requiring teachers to enumerate all possibilities. By
leveraging the natural variation present in student submissions,
such tools can cover variation in approaches without extra
configuration, as would be required for most other techniques.
The only exception is automated testing, which does not care
about implementation variation at all, but that approach is
limited to only objectively assessable assignments with strictly
defined interfaces.

There are several approaches to using student data: clustering
techniques, for example, identify groups of similar solutions
[25]-[29], allowing teachers to efficiently provide feedback
at the cluster level. While this is helpful in scaling manual
feedback, it does not support teachers in the actual assessment
of how a student’s work meets the criteria. Other tools extract
common code patterns across submissions to highlight patterns
that might prove of interest [30], [31] or use these patterns
as features to train machine learning models to identify
positive and negative examples [32], [33]. Extracting these
patterns requires careful configuration for each dataset to get
the best results [31], however, which makes it difficult to
reuse across assignments and especially tricky for larger open-
ended assignments. Some data-driven tools interactively involve
teachers in the learning phase, for example to mark which
patterns indicate correct and incorrect solutions [34], to guide
the system in finding equivalent approaches [35] or to define
rules based on model solutions [36], [37], but they are still
designed for assignments where students’ solutions mostly
vary by implementation rather than design, as is the case in
open-ended assignments.

Existing tools that work on assignments that are not
objectively verifiable, typically depend on heuristic techniques
that only consider some aspects, rather than the full solution
[17]. Nye at al [38] recommend that ill-defined domains are
split into well- and ill-defined parts, such that the well-defined
parts can be handled by a tool.

Recent advances in generative Al lead many to reconsider
how we will teach programming in the future and also how
we will assess students’ programming skills [39]. Experiments
with GPT-3.5 showed that it often failed to provide accurate
feedback on programming assignments, even on relatively small
exercises [40]. GPT-4 improved these results, and on small
exercises its generated feedback can lead students to better
results than human-written feedback [41], but still provides
incomplete or incorrect feedback in almost half of the cases [42].
Even when these models improve and are able to give more
accurate feedback, the lack of transparency in their workings
will remain an issue when using them directly in the assessment
process.

Overall, we see that although there are many tools for
automated assessment of small, closed programming exercises,



Role

Teaching staff: coordinators
Teaching staff: configurators
Teaching staff: tutors in detail
Teaching staff: tutors in overview
Students

Examination board
Programme management
Educational support
Developer/maintainers
System administrators

#Participants

SCOPRLO— WAL

Table I: Number of participants per type of stakeholder. Note
that many participants represented more than one stakeholder.

there is limited work on open-ended assignments. This brings us
back to the question we answer in this paper: what requirements
do stakeholders have for a tool that supports the assessment
of open-ended programming assignments?

III. INTERVIEWS SETUP

To answer this question, we held interviews with stakeholders
of our intended tool'. We had three goals with these interviews,
namely to identify our list of stakeholders, to identify their
goals and applications for the tool, and to identify requirements
related to those goals and applications.

We selected participants based on their role and involvement
with open-ended assignments at our university. We started
with teaching staff and iteratively determined stakeholders by
asking each participant who else would be relevant to talk
to. In total, we invited 19 stakeholders to an interview, 12 of
whom agreed and participated in the study. Many participants
represented multiple stakeholders based on their different roles,
for example teaching assistants who are themselves students in
other courses and teachers who would interact with the tool in
different roles. The distribution of participants over different
roles is shown in tbl. I. These roles correspond to our types
of stakeholders, which we will describe in sec. IV.

Not all stakeholders were represented in the interviews.
We based the concerns of these stakeholders on their role
description, general concerns and how those could relate to the
project. The programme management’s concerns were brought
in by one of the authors, who is a programme director. The
concerns of developers/maintainers were based on another
author’s previous experience in developing a tool with similar
goals. As we will be focussing on a prototype first, we decided
to not investigate the concerns of system administrators further
either, as those would likely be at the edge of our system and
not important in the scope of a prototype.

In the interviews, we asked participants about their use
cases for an automated assessment tool and their concerns
related to those use cases. We started each interview with an
introduction, briefing and handling informed consent. After this
introduction, we asked questions about what the participant
would like an automated assessment tool to do or not do from

IThese interviews were conducted according to the outlined procedure with
approval from the Ethics Committee Computer & Information Science of the
University of Twente. This is known to them as request RP 2022-178.

their different perspectives (e.g. as a teaching assistant or as
a student). Their concerns were summarised and noted down
during the interview. After discussing the concerns from each
perspective, the participants were asked to review the concerns
that were recorded in the document and make any corrections
or clarifications. The interview concluded with a debriefing
about the next steps and how their responses would be used.

The results of these interviews were lists of concerns for
each stakeholder.? Given that we created this artefact during
each interview, we decided not to record the interviews. To
determine the requirements for our tool, we combined all
similar concerns across our stakeholders and noted the number
of participants that voiced a certain concern to serve as a weak
indicator of importance. One examination board member noted,
for example, that the tool “should not be 100% automatic”
and a coordinator expressed their concern that the “teacher
gets final say in the grade,” which we both included in the
requirement that the tool “does not give an (automatic) grade.”
Next, we distinguished functional requirements and quality
requirements, resulting in a final list of requirements, which
we describe in sec. IV. From the functional requirements we
distilled a set of use cases, which serve as a categorisation to
better get an overview of the requirements and at the same
time justifies their applicability to the tool.

Though not the focus of this study, we did create a design
and prototype based on that design to test the feasibility of
implementing our requirements. To evaluate our design, we
used a scenario-based method [43], [44] to evaluate whether
the design supports different usage scenarios, which we derived
from the use cases mentioned before. We also performed a
small-scale evaluation of our prototype with the assessment
criteria and student submissions of two programming projects.

IV. RESULTS

From our initial list of stakeholders and the recommendations
from our interview participants, we found the following ten
stakeholders for our project:

o Teaching staff, both teachers and teaching assistants. They

have different relations to the tool depending on their role
in a course: coordinators may choose to use the tool in a
course, configurators set the tool up with the appropriate
assessment configuration, tufors in detail give feedback
to students on an individual level or grade a single
submission, and tutors in overview want to incorporate
generic feedback in plenary teaching.

o Students have an interest in receiving feedback on their

work.

o The examination board is responsible for the quality of

assessment and grading.

o Programme management is responsible for the study

programme as a whole and the quality of content.

o Educational support helps educators in the organisation

of their teaching, including choosing the tools they may
want to use.

2The templates used to gather concerns are available in the companion
package at https://doi.org/10.5281/zenodo.14627201.


https://doi.org/10.5281/zenodo.14627201

o Developers and maintainers are, of course, responsible
for building the tool and adapting it to a changing
environment.

« System administrators are responsible for deploying the
tool and keeping it running and up-to-date.

We gathered the concerns for all of these, except for system
administrators, and determined their use cases and associated
requirements from those. In the following sections we describe
the requirements as related to their use cases. The full list is
available online?. In the next sections, we refer back to the
requirements in this list with their identifiers in parentheses
after the relevant discussion. Identifiers starting with F indicate
a functional requirement, identifiers starting with Q a quality
requirement.

A. Requirements for individual assessment

We started the interview process with two use cases in
mind for our tool: providing individual feedback to students
(formative assessment) and grading a project (summative
assessment). Note that these are both use cases for teaching
staff, be it lecturers or teaching assistants, because we only

focus on the first part of feedback: assessing the current state.

Giving actionable feedback also requires identifying what needs
to be improved and providing suggestions on how to achieve
that, which we trust the teaching staff to do.

When it comes to these use cases, the three requirements
that were mentioned most often were that the tool should not
give an (automatic) grade (F12), that the tool should give a
quick and clear overview of the assessment (F3) and that the
tool should show a student’s progress over time (F5). These
were all mentioned by tutors in detail, with the first one also
supported by coordinators and the examination board. Based
on the interviews, we split the use case of grading a project
into two subtly different use cases: grading a project in a
grading session and grading a project during an oral exam. For
the first one, tutors indicated an interest in reviewing projects
“horizontally”, i.e. working through projects per criterion, rather
than reviewing all criteria project by project (F13). For the
latter use case, this is not helpful, but tutors did mention their
interest in a student’s progress over time (F5).

Related to giving an overview, tutors in detail also mentioned
wanting to get suggestions for interesting code snippets to look
into (F1), see code snippets as evidence for an assessment (F6)
and get more context and details for those snippets (F26). They
would also like to see similar problems and repetitions of the
same problem grouped together (F2) and have the option to
ignore all similar mistakes (F4). Additionally, the tool should
help them understand and navigate the program (F23).

When providing individual feedback, tutors mentioned they
would like to share feedback from the tool with students (F10),
extending or modifying it to make it more constructive (F8).
The standard messages from the tool should use objective
language for objective observations (F24). Coordinators and

3The full list of requirements is available in the companion package at
https://doi.org/10.5281/zenodo.14627201.

the examination board also expressed an interest in teachers
being able to make their own assessment (F11). Tutors also
mentioned the tool should never share feedback with students
automatically (F9). One student had a similar concern, wanting
all feedback to be checked by a teacher or teaching assistant
before it was shown to them (F59).

B. Requirements of students

Of course, students also have two use cases for the system:
receiving feedback and getting a grade. While the latter is likely
best served through an integration with existing platforms that
students already interact with (F28), both students and tutors
in detail indicated they would like the tool to help students
understand feedback, for example by linking to explanations of
terminology (F22). Additionally, students indicated they would
like to see their own progress over time (F5), receive clear
(F68) and constructive (Q18) feedback, also on things that are
going well (F67). They would also like the assessment process
to be understandable (Q16) and see a marked rubric, especially
when a project is graded summatively (F70). One coordinator
agrees, noting that the tool should be able to explain the
given assessment on demand (F27). In the context of formative
feedback, students would like to see which tutor has shared
feedback with them (F69).

C. Requirements for aggregate assessment and evaluation

Besides individual assessments, teachers also indicated an
interest in providing more general feedback to the whole cohort
during plenary sessions and giving help to groups of students
with similar needs. For the first use case, tutors in overview
indicated they would like to see what criteria or ILOs are
commonly met or not met (F25) and see the progress of the
cohort as a whole during the course (F14). For the second use
case, one tutor in overview mentioned they would like to see
clusters of students who make similar mistakes (F15). One
coordinator noted that the information shown should not be
overwhelming when there are 300 projects submitted (QS).

An additional use case that came up was to evaluate a course,
of interest to teaching staff, but also to programme management
and educational support. A part of this is analysing the
outcomes, which is also relevant to the use cases on providing
feedback to groups of students. Tutors in overview indicated
they would like to see clusters of mistakes that happen together
(F16), see code samples (F17) and normalised patterns (F18)
for common mistakes in a group and compare metrics (F19).
The horizontal review mentioned for the grading process (F13)
could also be part of this outcome analysis. Comparing the
outcomes of different groups based on meta-information, like
gender or prior knowledge, (F20) and comparing the outcomes
with previous editions of a course (F21) were also mentioned
as part of the evaluation use case. One tutor in overview
mentioned they would like to see a dashboard or report with
this evaluation at the end of the course (F57). Additionally,
the examination board and educational support indicated an
interest in using the tool to evaluate the constructive alignment
between ILOs and assessment criteria (F58).


https://doi.org/10.5281/zenodo.14627201

D. Requirements for configuration

To support all these use cases, the tool needs to be configured
by teaching staff. This is not a use case per se, but it is necessary
to enable the other use cases. The two most-mentioned
requirements in this category were that the configurators would
like to have a community or platform in which they can share
ILOs, criteria and rules (F49) and that the tool gives support
while configuring ILOs, criteria and rules, for example with
documentation, examples and a live assessment of an example
project (F54). To further support configuration the tool should
give suggestions for rules (F43) and discover patterns that can
be matched with criteria (F53).

Regarding ILOs and constructive alignment between ILOs
and criteria, the tool can support configurators by giving
guidance in formulating the ILOs (F32), linking criteria to
one or more ILOs (F51) (but also allow criteria that do not
link to an ILO (F50)) and getting feedback on the ILOs (F55)
and the link between ILOs and criteria (F56). To keep the
assessment configuration organised, the tool should support
grouping criteria together (F44) and support configuring the
importance of different criteria (F52). Within the configuration
UI, options should be sensibly grouped together (Q4) and
unused options should be hidden (Q5).

Many other requirements mentioned different aspects of
a program that the tool should support assessment of, like
code patterns and design patterns (F38), comments and code
file headers (F42), variable naming conventions (F33), use
of constructs like if-statements (F34), metrics from static
analysis like length of a method (F35), code style consistency
(F36), metrics from dynamic analysis like test coverage or
execution time (F37), code smells (F39), code quality (F40) and
unused code (F41). Besides this flexibility in supported criteria,
configurators were also interested in flexibility regarding the
course structure, like changing the focus to different ILOs
during consecutive parts of a course (F45) and only seeing
those ILOs and criteria that are relevant at that point in the
course (F46). Across courses, a configurator noted they would
like to copy relevant parts from previous course editions (F48),
separate parts of criteria that change every edition from ones
that stay the same (F29) and for the tool to support assessment
of overarching ILOs that come back in many courses (F7).

Coordinators also had concerns about the configuration, like
the tool not imposing restrictions on the types of exercises
given (F31), working with exercises where students have to
improve a given piece of code (F47) and the tool being able to
assess non-functional aspects (F30). They would also like to
easily import and export rubrics (Q7) and they think the tool
should provide basic functionality with minimal configuration
(Q6) to quickly get started. Of course the tool should fit in
the context of the course (F60) and support the programming
language used in the course (F61). The examination board also
noted that criteria are not always binary, and the tool should
support those criteria too (F62).

The flexibility that is required here also leads to two
requirements from the developer’s side: adding support for

new programming languages (Q1) as well as new metrics or
types of patterns or rules (Q2) should be easy to achieve.

E. Requirements for interoperability

The second most mentioned requirement, after not automat-
ically giving a grade, was that our tool should integrate with
existing platforms (F28). Coordinators as well as tutors in
detail mentioned that they would like the tool to integrate in
systems they already use, like the Canvas learning management
system (LMS) or GitHub. One coordinator added that these
integrations should be seamless and built with attention to
details (Q3).

F. General requirements

Our stakeholders also expressed some concerns about the
functioning of the tool in general. Two important ones to note
concern reliability and validity: in summative contexts, the
assessment should be highly reliable and valid (Q9), while
in formative contexts, the reliability and validity should be
high enough to serve as useful discussion starter (Q10). Other
stakeholders expressed that the assessment should be reliable
enough to be trusted (Q14) and in general reliable, valid and
transparent (Q15).

Besides the assessment, the tool itself should also work and
“not spew error messages” (Q11), have fast and easy interactions
and quick navigation (Q17) and be easy, simple and intuitive to
use, especially on the first interaction (Q13). One coordinator
also expressed a desire to tweak every little setting to fully
customise the tool to their preferences (Q12).

G. Requirements out of scope

Not all requirements voiced by our participants could be
connected to a use case for our tool, so we deemed four
requirements to be out of scope for this project. Coordinators,
tutors in detail and the examination board requested that the
tool includes or works with a plagiarism checker (F63), but
we consider this to fall out of scope, because our tool was
already requested to integrate with other platforms—cf. (F28).
These often already come with tools for plagiarism checking,
integrated or built in directly. The examination board also
requested that the tool helps in the inspection of borderline
cases when it comes to grades (F64). This is also out of
scope, however, because our tool does not perform automatic
grading and thus has no ability to highlight borderline cases
automatically. Finally, a tutor in overview noted they would like
the tool to analyse the consistency between different assessors
overall (F65) or on a single project (F66), but this would require
comparing manually entered assessments, which is beyond the
scope of the project.

V. DISCUSSION AND CONCLUSION

Looking at the results, we recognise two major themes
coming back in many requirements: our tool should be
supporting and flexible. It should be flexible, because it should
support every criterion that could be assessed by looking at code
and every such criterion in a course should be configurable



in the tool. It should integrate with LMSs and other tools
and be extensible to support multiple programming languages.
It should be supporting, because it should help teachers
assess projects by highlighting the code that is relevant to
certain assessment criteria, rather than performing automatic
grading by itself. The tool should also leverage previous
submissions to support teachers during the configuration phase
with suggestions and immediate feedback.

A. Limitations

As always when doing interviews, there is a risk of
misinterpretation. In our case, we need to interpret what our
participants have said and ultimately translate it into our list
of requirements. We mitigated this risk by taking notes and
repeating back what was written, guiding our participants into
formulating concerns directly. Our participants were able to
review their documented list of concerns and make corrections
if there were any misunderstandings during the interview. By
doing the first step of analysis with the participant present, we
could ensure that there was no loss of meaning or confusion
introduced by this step.

Another limitation stems from our pool of participants: the
sample is small and all of them had experience working at
a single institution. This means that we were limited in the
diversity of perspectives we were able to get. On one hand, this
is a good feature, since this is the primary environment we are
designing for. On the other hand, focusing on the university with
a learning-by-doing vision [45] and a history of large integrated
study units with integrating projects [46], can be a source of
certain biases. We were able to mitigate some aspects of this
by generalising requirements that were formulated in terms of
our environment—for example, by generalising concerns about
integrating with our LMS to integrating with LMSs in general.

In the process of conducting our interviews, we have discov-
ered two more issues. First, we used the classic CSAT/DSAT
method of measuring customer satisfaction, by asking partic-
ipants to prioritise their concerns with scoring how satisfied
they would be if the tool addressed their concern, and how
dissatisfied they would be if it did not. During the interviews
we noticed our participants were confused about this system.
Some participants seemed to interpret high scores as high
dissatisfaction while others interpreted low scores as being
highly dissatisfied. Clarification during the interviews did not
help and only led to internally inconsistent results. This means
that these scores were not usable and had to be discarded. In
the end we only used the number of participants who voiced
a concern as a weak indicator of priority.

Second, we noticed that some participants had difficulty
separating their different roles, despite repeated guidance in
the formulation of our questions. This means that a concern
like “the tool supports Python and GitHub” was recorded as a
concern for a tutor in detail even though it is not their decision
to use the tool in a course or not. This could have been an
issue if we had to prioritise concerns with the power-interest
classification of stakeholders who voiced those concerns, but

we did not find any conflicting concerns in the process of
translating them to requirements, so this was not necessary.

B. Practical evaluation and future work

As noted in sec. III, we have created a design and developed
a prototype to test the feasibility of implementing these
requirements. Since the main themes of support and flexibility
are mainly concerned with the main features of the assessment
process and the types of criteria it supports, we decided to
focus on the core assessment pipeline. In a scenario-based
evaluation, we found that our design is able to support all
use cases and fulfils many requirements. Out of the 89 total
requirements, our design did not explicitly address ten, four of
which we already classified as out of scope. The other six were
mentioned only by a single stakeholder during the interviews.

Of these six, only two requirements about supporting rubrics
(F70, Q7) are clearly not met, because we focus on providing
feedback rather than calculating grades. It is therefore more
important to get feedback on each specific criterion, rather than
seeing what score you would receive according to a rubric.
The other four are not explicitly addressed, but there are no
design choices that prevent these from being addressed. We,
for example, did not explicitly address the option to separate
criteria that change between editions from criteria that stay
the same (F29), but users can achieve this using the standard
categorisation features for criteria.

Finally, we built a prototype of the core of our design, to test
the feasibility in practice. We configured the prototype with
the ILOs and assessment criteria of our two case study projects
and compared the resulting automated assessments of student
projects with the corresponding manual assessments. While
we were able to implement the prototype without issues, the
tool was not yet at the level where we want it to be regarding
flexibility and support. There were still some criteria that did
not fit in the model that our design proposed, even though
they were (partly) automatically assessable in principle, so the
model was not quite flexible enough. The features that should
support teachers in the configuration phase were not helpful in
practice. The configuration process is still a major area where
improvements can be made, to actually support teachers in
using the tool.

C. Summary of findings

In our efforts to build an automated assessment tool that
supports teachers in the assessment of open-ended programming
assignments, we conducted interviews with teaching staff and
other relevant stakeholders to identify their goals, applications
and related requirements for such a tool, and reported on
them qualitatively. Two major themes emerge from these
requirements, regarding flexibility (being able to assess a
wide variety of criteria, integrating with other platforms
and tools and being extensible to multiple programming
languages) and its supporting role (by aiding teaching staff
in the assessment process, rather than fully automating, but
also guiding them in the configuration of the tool). To some



extent this contradicts the existing trend in highly specialised
nanotutors and autograders.

It remains an open question how to fully address all these
requirements in a reliable tool. We were able to address most of
the most prominent ones in our design. However, the prototype
of the core of it revealed challenges in both flexibility and
support. In its current state, the prototype does not yet support

the

entire spectrum of widely varying assessment criteria

used in practice, nor does it advise the teachers in its own
configuration. More work will follow to address these issues.

[1]
[2]

[6]

[7]

[12]

[13]

[14]

[15]

[16]

(17]

from Instrument to Design.

REFERENCES

R. Kneyber, D. Sluijsmans, V. Devid, and B. W. Lopez, Formative Action:
Hodder Education Group, Apr. 2024.

K. M. Ala-Mutka, “A survey of automated assessment approaches for
programming assignments,” Computer Science Education, vol. 15, no. 2,
pp- 83-102, Jun. 2005. [Online]. Available: https://doi.org/10.1080/
08993400500150747

P. Thantola, T. Ahoniemi, V. Karavirta, and O. Seppild, “Review of
recent systems for automatic assessment of programming assignments,”
in Proceedings of the 10th Koli Calling International Conference on
Computing Education Research - Koli Calling '10. ACM Press, 2010.
[Online]. Available: https://doi.org/10.1145/1930464.1930480

M. Messer, N. C. C. Brown, M. Koélling, and M. Shi, “Automated grading
and feedback tools for programming education: A systematic review,”
2023. [Online]. Available: https://doi.org/10.48550/ARXIV.2306.11722

A. Mader, A. Fehnker, and E. Dertien, “Tinkering in informatics
as teaching method,” in Proceedings of the 12th International
Conference on Computer Supported Education. SCITEPRESS -
Science and Technology Publications, 2020. [Online]. Available:
https://doi.org/10.5220/0009467304500457

A. Rump and V. Zaytsev, “A refined model of ill-definedness in
project-based learning,” in MoDELS Companion Proceedings. ACM,
oct 2022. [Online]. Available: https://doi.org/10.1145/3550356.3556505
D. R. Sadler, “Formative assessment and the design of instructional
systems,” Instructional Science, vol. 18, no. 2, pp. 119-144, Jun. 1989.
[Online]. Available: https://doi.org/10.1007/bf00117714

D. R. Krathwohl, “A revision of bloom’s taxonomy: An overview,’
Theory Into Practice, vol. 41, no. 4, pp. 212-218, Nov. 2002. [Online].
Available: https://doi.org/10.1207/s15430421tip4104_2

J. Biggs and K. Collis, Evaluating the Quality of Learning: The SOLO
Taxonomy. Academic Press, 1982.

J. Biggs and C. Tang, Teaching for quality learning at university,
4th ed. McGraw-Hill/Society for Research into Higher Education/Open
University Press, 2011.

P. C. Blumenfeld, E. Soloway, R. W. Marx, J. S. Krajcik,
M. Guzdial, and A. Palincsar, “Motivating project-based learning:
Sustaining the doing, supporting the learning,” Educational Psychologist,
vol. 26, no. 3-4, pp. 369-398, Jun. 1991. [Online]. Available:
https://doi.org/10.1080/00461520.1991.9653139

J. S. Krajcik and N. Shin, “Project-based learning,” in The
Cambridge Handbook of the Learning Sciences, R. K. Sawyer, Ed.
Cambridge University Press, 2014, pp. 275-297. [Online]. Available:
https://doi.org/10.1017/cbo9781139519526.018

J. Lonngren, “Wicked problems in engineering education: Preparing
future engineers to work for sustainability,” Ph.D. dissertation, Chalmers
University of Technology, Gothenburg, Sweden, 2017.

S. E. Gallagher and T. Savage, “Challenge-based learning in
higher education: an exploratory literature review,” Teaching in
Higher Education, pp. 1-23, Dec. 2020. [Online]. Available:
https://doi.org/10.1080/13562517.2020.1863354

H. A. Simon, “Information-processing theory of human problem solving,”
in Handbook of Learning and Cognitive Processes (Volume 5), W. Estes,
Ed. Psychology Press, 1978.

P. Fournier-Viger, R. Nkambou, and E. M. Nguifo, “Building intelligent
tutoring systems for ill-defined domains,” in Studies in Computational
Intelligence. Springer Berlin Heidelberg, 2010, pp. 81-101.

N.-T. Le, F. Loll, and N. Pinkwart, “Operationalizing the continuum
between well-defined and ill-defined problems for educational technology,”
IEEE Transactions on Learning Technologies, vol. 6, no. 3, pp. 258-270,
Jul. 2013. [Online]. Available: https://doi.org/10.1109/t1t.2013.16

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

(35]

[36]

N.-T. Le and N. Pinkwart, “Towards a classification for programming
exercises,” in Proceedings of the 2nd Workshop on Al-supported
Education for Computer Science, Jan. 2014.

M. Messer, N. C. C. Brown, M. Koélling, and M. Shi, “Automated
grading and feedback tools for programming education: A systematic
review,” ACM Transactions on Computing Education, vol. 24, no. 1, pp.
1-43, Feb. 2024. [Online]. Available: https://doi.org/10.1145/3636515
H. Keuning, J. Jeuring, and B. Heeren, “A systematic literature review
of automated feedback generation for programming exercises,” ACM
Transactions on Computing Education, vol. 19, no. 1, pp. 1-43, Jan.
2019. [Online]. Available: https://doi.org/10.1145/3231711

M. G. Hahn, S. M. B. Navarro, L. De La Fuente Valentin,
and D. Burgos, “A systematic review of the effects of automatic
scoring and automatic feedback in educational settings,” IEEE
Access, vol. 9, pp. 108190-108198, 2021. [Online]. Available:
https://doi.org/10.1109/access.2021.3100890

J. C. Paiva, J. P. Leal, and A. Figueira, “Automated assessment
in computer science education: A state-of-the-art review,” ACM
Transactions on Computing Education, Feb. 2022. [Online]. Available:
https://doi.org/10.1145/3513140

J. McBroom, I. Koprinska, and K. Yacef, “A survey of automated
programming hint generation: The HINTS framework,” ACM Computing
Surveys, vol. 54, no. 8, pp. 1-27, Nov. 2022. [Online]. Available:
https://doi.org/10.1145/3469885

M. Messer, N. C. C. Brown, M. Kolling, and M. Shi, “Machine
learning-based automated grading and feedback tools for programming:
A meta-analysis,” in Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1. ACM, Jun. 2023.
[Online]. Available: https://doi.org/10.1145/3587102.3588822

S. Gross, X. Zhu, B. Hammer, and N. Pinkwart, “Cluster based feedback
provision strategies in intelligent tutoring systems,” in Intelligent Tutoring
Systems. Springer Berlin Heidelberg, 2012, pp. 699-700.

E. L. Glassman, J. Scott, R. Singh, P. J. Guo, and R. C. Miller, “OverCode,”
ACM Transactions on Computer-Human Interaction, vol. 22, no. 2, pp.
1-35, Apr. 2015. [Online]. Available: https://doi.org/10.1145/2699751
J. B. Moghadam, R. R. Choudhury, H. Yin, and A. Fox,
“AutoStyle,” in Proceedings of the Second (2015) ACM Conference
on Learning @ Scale. ACM, mar 2015. [Online]. Available:
https://doi.org/10.1145/2724660.2728672

R. R. Choudhury, H. Yin, and A. Fox, “Scale-driven automatic hint

generation for coding style,” in Intelligent Tutoring Systems. Springer
International Publishing, 2016, pp. 122-132.
A. G. Zhang, Y. Chen, and S. Oney, “VizProg: Identifying

misunderstandings by visualizing students’ coding progress,” in
Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems. ACM, Apr. 2023. [Online]. Available:
https://doi.org/10.1145/3544548.3581516

A. Nguyen, C. Piech, J. Huang, and L. Guibas, “Codewebs: scalable
homework search for massive open online programming courses,”
in Proceedings of the 23rd international conference on World
wide web - WWW 'I4. ACM Press, 2014. [Online]. Available:
https://doi.org/10.1145/2566486.2568023

K. Mens, S. Nijssen, and H.-S. Pham, “The good, the bad, and the
ugly: mining for patterns in student source code,” in Proceedings of the
3rd International Workshop on Education through Advanced Software
Engineering and Artificial Intelligence. ACM, Aug. 2021. [Online].
Available: https://doi.org/10.1145/3472673.3473958

T. Lazar, M. MoZina, and I. Bratko, “Automatic extraction of AST patterns
for debugging student programs,” in LNCS. Springer International
Publishing, 2017, pp. 162-174.

M. Mozina and T. Lazar, “Syntax-based analysis of programming
concepts in python,” in LNCS. Springer International Publishing, 2018,
pp. 236-240.

M. Mozina, T. Lazar, and 1. Bratko, “Identifying typical approaches and
errors in prolog programming with argument-based machine learning,”
Expert Systems with Applications, vol. 112, pp. 110-124, Dec. 2018.
[Online]. Available: https://doi.org/10.1016/j.eswa.2018.06.029

S. Xu and Y. S. Chee, “Transformation-based diagnosis of student
programs for programming tutoring systems,” IEEE Transactions on
Software Engineering, vol. 29, no. 4, pp. 360-384, apr 2003. [Online].
Available: https://doi.org/10.1109/tse.2003.1191799

A. Mitrovic, “Fifteen years of constraint-based tutors: what we have
achieved and where we are going,” User Modeling and User-Adapted
Interaction, vol. 22, no. 1-2, pp. 39-72, Oct. 2011.


https://doi.org/10.1080/08993400500150747
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.48550/ARXIV.2306.11722
https://doi.org/10.5220/0009467304500457
https://doi.org/10.1145/3550356.3556505
https://doi.org/10.1007/bf00117714
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1017/cbo9781139519526.018
https://doi.org/10.1080/13562517.2020.1863354
https://doi.org/10.1109/tlt.2013.16
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3231711
https://doi.org/10.1109/access.2021.3100890
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3469885
https://doi.org/10.1145/3587102.3588822
https://doi.org/10.1145/2699751
https://doi.org/10.1145/2724660.2728672
https://doi.org/10.1145/3544548.3581516
https://doi.org/10.1145/2566486.2568023
https://doi.org/10.1145/3472673.3473958
https://doi.org/10.1016/j.eswa.2018.06.029
https://doi.org/10.1109/tse.2003.1191799

[37]

[38]

[39]

[40]

[41]

P. Suraweera, A. Mitrovic, and B. Martin, “A knowledge acquisition sys-
tem for constraint-based intelligent tutoring systems,” in Proceedings of
the 12th International Conference on Artificial Intelligence in Education
(AIED), ser. Frontiers in Artificial Intelligence and Applications, C. Looi,
G. I. McCalla, B. Bredeweg, and J. Breuker, Eds., vol. 125. IOS Press,
2005, pp. 638-645.

B. D. Nye, M. W. Boyce, and R. A. Sottilare, Defining the Ill-Defined:
From Abstract Principles to Applied Pedagogy. Army Research
Laboratory, 2016, pp. 19-37.

B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, J. Prather,
and E. A. Santos, “Programming is hard - or at least it used to be,”
in Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. ACM, Mar. 2023. [Online]. Available:
https://doi.org/10.1145/3545945.3569759

R. Balse, B. Valaboju, S. Singhal, J. M. Warriem, and P. Prasad,
“Investigating the potential of GPT-3 in providing feedback for
programming assessments,” in Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 1. ACM,
Jun. 2023. [Online]. Available: https://doi.org/10.1145/3587102.3588852
H. Nguyen, N. Stott, and V. Allan, “Comparing feedback from large
language models and instructors: Teaching computer science at scale,”
in Proceedings of the Eleventh ACM Conference on Learning @ Scale,
ser. L@S °24. ACM, Jul. 2024, pp. 335-339. [Online]. Available:
https://doi.org/10.1145/3657604.3664660

[42]

[43]

[44]

[45]

[46]

I. Azaiz, N. Kiesler, and S. Strickroth, “Feedback-generation for
programming exercises with gpt-4,” in Proceedings of the 2024 on
Innovation and Technology in Computer Science Education V. 1,
ser. ITICSE 2024. ACM, Jul. 2024, pp. 31-37. [Online]. Available:
https://doi.org/10.1145/3649217.3653594

L. Dobrica and E. Niemela, “A survey on software architecture
analysis methods,” IEEE Transactions on Software Engineering,
vol. 28, no. 7, pp. 638-653, jul 2002. [Online]. Available:
https://doi.org/10.1109/tse.2002.1019479

A. Patidar and U. Suman, “A survey on software architecture evaluation
methods,” in 2015 2nd International Conference on Computing for
Sustainable Global Development (INDIACom), 2015, pp. 967-972.
[Online]. Available: https://ieeexplore.ieee.org/document/7100391
University of Twente, “Learning-by-Interacting: The University of
Twente Vision on Learning and Teaching,” https://www.utwente.
nl/en/service-portal/organisation-regulations-and-codes-of-conduct/
vision-on-learning-and-teaching, Apr. 2023.

I. Visscher-Voerman and A. Muller, “Curriculum Development in
Engineering Education: Evaluation and Results of the Twente
Education Model (TOM),” in 45th SEFI Annual Conference, 2017.
[Online]. Available: https:/ris.utwente.nl/ws/portalfiles/portal/19806823/
sefi_curriculum_development_in_engineering_education.pdf


https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3587102.3588852
https://doi.org/10.1145/3657604.3664660
https://doi.org/10.1145/3649217.3653594
https://doi.org/10.1109/tse.2002.1019479
https://ieeexplore.ieee.org/document/7100391
https://www.utwente.nl/en/service-portal/organisation-regulations-and-codes-of-conduct/vision-on-learning-and-teaching
https://www.utwente.nl/en/service-portal/organisation-regulations-and-codes-of-conduct/vision-on-learning-and-teaching
https://www.utwente.nl/en/service-portal/organisation-regulations-and-codes-of-conduct/vision-on-learning-and-teaching
https://ris.utwente.nl/ws/portalfiles/portal/19806823/sefi_curriculum_development_in_engineering_education.pdf
https://ris.utwente.nl/ws/portalfiles/portal/19806823/sefi_curriculum_development_in_engineering_education.pdf

	Introduction
	Background
	Formative and summative assessment
	Intended learning outcomes
	Open-ended assignments
	Automated assessment tools

	Interviews Setup
	Results
	Requirements for individual assessment
	Requirements of students
	Requirements for aggregate assessment and evaluation
	Requirements for configuration
	Requirements for interoperability
	General requirements
	Requirements out of scope

	Discussion and Conclusion
	Limitations
	Practical evaluation and future work
	Summary of findings

	References

